CC BY-NC-ND 4.0 · Eur J Dent 2020; 14(S 01): S179-S181
DOI: 10.1055/s-0040-1719210
Letter to Editor

Differential Diagnosis of COVID-19 Enanthema

Rochman Mujayanto
1   Department of Oral Medicine, Faculty of Dentistry, Universitas Islam Sultan Agung, Central Java, Indonesia
,
Recita Indraswary
2   Department of Oral Biology, Faculty of Dentistry, Universitas Islam Sultan Agung, Central Java, Indonesia
› Author Affiliations

Coronavirus disease 2019 (COVID-19) is a disease that has become a pandemic in the world with very high transmission rates. COVID-19 is caused by coronavirus which initially infects animals (bats, camels, birds, and anteater). This virus is transmitted by animals to humans, then transmitted from human to human. Coronavirus that infects humans causes acute respiratory distress syndrome (ARDS).[1] [2]

COVID-19 infection begins with the invasion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in host cells. SARS-CoV-2 has a life cycle in host cells to be able to replicate so that viral load will increase and cause symptoms of the disease. The life cycle of SARS-CoV-2 in host cells can be divided into attachment, endocytosis, membrane fusion phases, biosynthesis, and maturation. The presence of SARS-CoV-2 in the host body will trigger a series of immune responses that involve complex intersection signaling.[1] [2] [3] [4]



Publication History

Article published online:
26 November 2020

© 2020. European Journal of Dentistry. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Melo Neto CLM, Bannwart LC, de Melo Moreno AL, Goiato MC. SARS-CoV-2 and dentistry-review. Eur J Dent 2020;14(suppl S1):S130–S139 doi:10.1055/s-0040-1716438
  • 2 Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal 2020; 10 (02) 102-108
  • 3 Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J 2020; 55 (04) 9-11
  • 4 Wang C, Li W, Drabek D, et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun 2020;11(1):2251 doi:10.1038/s41467-020-16256-y
  • 5 Morawska L, Cao J. Airborne transmission of SARS-CoV-2: the world should face the reality. Environ Int 2020; 139: 105730
  • 6 Sabino-Silva R, Jardim ACG, Siqueira WL. Coronavirus COVID-19 impacts to dentistry and potential salivary diagnosis. Clin Oral Investig 2020; 24 (04) 1619-1621
  • 7 Susilo A, Rumende CM, Pitoyo CW, et al. Coronavirus disease 2019 : review of current literatures. JPDI 2020;7(1):45-67 doi:10.7454/jpdi.v7i1.415
  • 8 Ather A, Patel B, Ruparel NB, Diogenes A, Hargreaves KM. Coronavirus disease 19 (COVID-19): Implications for clinical dental care. J Endod 2020; May 46 (05) 584-595
  • 9 Meng L, Hua F, Bian Z. Coronavirus disease 2019 (COVID-19): emerging and future challenges for dental and oral medicine. J Dent Res 2020; 99 (05) 481-487
  • 10 Lovato A, de Filippis C. Clinical presentation of COVID-19: a systematic review focusing on upper airway symptoms. Ear Nose Throat J 2020; Nov 99 (09) 569-576
  • 11 Chen L, Zhao J, Peng J, et al. Detection of SARS-CoV-2 in saliva and characterization of oral symptoms in COVID-19 patients. Cell Prolif 2020;53(12):e12923 doi:10.1111/cpr.12923
  • 12 Galván Casas C, Català A, Carretero Hernández G. et al. Classification of the cutaneous manifestations of COVID-19: a rapid prospective nationwide consensus study in Spain with 375 cases. Br J Dermatol 2020; 183 (01) 71-77
  • 13 Recalcati S. Cutaneous manifestations in COVID-19: a first perspective. J Eur Acad Dermatol Venereol 2020; 34 (05) e212-e213
  • 14 Drago F, Rampini E, Rebora A. Atypical exanthems: morphology and laboratory investigations may lead to an aetiological diagnosis in about 70% of cases. Br J Dermatol 2002; 147 (02) 255-260
  • 15 Drago F, Ciccarese G, Gasparini G. et al. Contemporary infectious exanthems: an update. Future Microbiol 2017; 12 (02) 171-193
  • 16 Kadambari S, Segal S, Acute viral exanthems. Medicine 2017;45(12):788-793 doi:10.1016/j.mpmed.2017.09.011
  • 17 Eggers M, Koburger-Janssen T, Eickmann M, Zorn J. In vitro bactericidal and virucidal efficacy of povidone-iodine gargle/mouthwash against respiratory and oral tract pathogens. Infect Dis Ther 2018; 7 (02) 249-259
  • 18 Eggers M. Infectious disease management and control with povidone iodine. Infect Dis Ther 2019; 8 (04) 581-593
  • 19 Farah B, Visintini S. Benzydamine for Acute Sore Throat: A Review of Clinical Effectiveness and Guidelines. 2018
  • 20 Altenburg A, El-Haj N, Micheli C, Puttkammer M, Abdel-Naser MB, Zouboulis CC. The treatment of chronic recurrent oral aphthous ulcers. Dtsch Arztebl Int 2014; 111 (40) 665-673
  • 21 Pignataro L, Marchisio P, Ibba T, Torretta S. Topically administered hyaluronic acid in the upper airway: a narrative review. Int J Immunopathol Pharmacol 2018; 32: 2058738418766739
  • 22 Dalessandri D, Zotti F, Laffranchi L. et al. Treatment of recurrent aphthous stomatitis (RAS; aphthae; canker sores) with a barrier forming mouth rinse or topical gel formulation containing hyaluronic acid: a retrospective clinical study. BMC Oral Health 2019; 19 (01) 153
  • 23 Mehdipour M, Taghavi A Zenooz, Sohrabi A, Gholizadeh N, Bahramian A, Jamali Z. A comparison of the effect of triamcinolone ointment and mouthwash with or without zinc on the healing process of aphthous stomatitis lesions. J Dent Res Dent Clin Dent Prospect 2016; 10 (02) 87-91