Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(17): 1725-1729
DOI: 10.1055/s-0040-1719827
DOI: 10.1055/s-0040-1719827
letter
Revisiting the Heck Reaction for Fluorous Materials Applications
We are grateful for support from an Air Force Office of Scientific Research (Grant Numbers 17RT0904 and FA9550-18-1-0341).
Abstract
Installing fluoroalkyl chains on a molecule by the Heck reaction is a versatile method to transform the molecule’s properties that enable unique materials applications. This work further expands the scope of this reaction to thiophenes, which were able to undergo further functionalization and polymerization, highlighting the potential of these molecules in conjugated organic materials.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1719827.
- Supporting Information
Publication History
Received: 06 July 2021
Accepted after revision: 03 August 2021
Article published online:
20 August 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Ragni R, Punzi A, Babudri F, Farinola GM. Eur. J. Org. Chem. 2018; 3500
- 2 Sun H, Putta A, Kloster JP, Tottempudi UK. Chem. Commun. 2012; 48: 12085
- 3 Meyer F. Prog. Polym. Sci. 2015; 47: 70
- 4 Babudri F, Farinola GM, Naso F, Ragni R. Chem. Commun. 2007; 1003
- 5 Jeong H.-G, Lim B, Khim D, Han M, Lee J, Kim J, Yun J.-M, Cho K, Park J.-W, Kim D.-Y. Adv. Mater. 2013; 25: 6416
- 6 Kim Y, Swager TM. Chem. Commun. 2005; 372
- 7 Wang B, Watt S, Hong M, Domercq B, Sun R, Kippelen B, Collard DM. Macromolecules 2008; 41: 5156
- 8 Lee M.-H, Kang M, Jeong H.-G, Park J.-J, Hwang K, Kim D.-Y. Macromol. Rapid Commun. 2018; 39: 1800431
- 9 Sletten EM, Swager TM. J. Am. Chem. Soc. 2014; 136: 13574
- 10 Yoshinaga K, Swager TM. Synlett 2018; 29: 2509
- 11 Partridge BE, Leowanawat P, Aqad E, Imam MR, Sun HJ, Peterca M, Heiney PA, Graf R, Spiess HW, Zeng X, Ungar G, Percec V. J. Am. Chem. Soc. 2015; 137: 5210
- 12 Gürol I, Gümüş G, Musluoğlu E, Arslan Y, Ahsen V. J. Porphyrins Phthalocyanines 2013; 17: 555
- 13 Miller MA, Sletten EM. Org. Lett. 2018; 20: 6850
- 14 Pozzi G, Quici S, Fish RH. Adv. Synth. Catal. 2008; 350: 2425
- 15 Chen W, Xu L, Xiao J. Tetrahedron Lett. 2001; 42: 4275
- 16 Chen W, Xu L, Hu Y, Banet Osuna AM, Xiao J. Tetrahedron 2002; 58: 3889
- 17 Su HL, Balogh J, Al-Hashimi M, Seapy DG, Bazzi HS, Gladysz JA. Org. Biomol. Chem. 2016; 14: 10058
- 18 Feng J, Cai C. J. Fluorine Chem. 2013; 146: 6
- 19 Darses S, Pucheault M, Genêt J.-P. Eur. J. Org. Chem. 2001; 1121
- 20 Alameddine B, Savary C, Aebischer O, Jenny T. Synthesis 2007; 271
- 21 Lee DS, Cho EJ. Org. Biomol. Chem. 2019; 17: 4317
- 22 Wang C, Wu X, Pu L. Chem. Eur. J. 2017; 23: 10749
- 23 Prices listed on Synquest Labs, Inc. (accessed July 1, 2021): http://www.synquestlabs.com
- 24 Herrmann WA, Brossmer C, Reisinger C, Riermeier TH, Öfele K, Beller M. Chem. Eur. J. 1997; 3: 1357
- 25 Example Synthetic Procedure A mixture of aryl bromide (1.0 equiv), 1H,1H,2H-perfluoro-1-decene (1.5 equiv/Ar–Br bond), Bu4NBr (0.85 equiv/Ar–Br bond), NaOAc (1.5 equiv/Ar–Br bond), and Herrmann’s catalyst (4 mol%/Ar–Br bond) were dissolved in DMF in a Schlenk flask (conditions A) or a microwave vial (conditions B). The reaction mixture was stirred for 24 h at 125 °C (conditions A) or 1 h at 200 °C (conditions B). Upon cooling the reaction mixture to room temperature, the residue was dissolved in EtOAc and HCl (1 M). The organic layer was separated, washed three times with water and once with brine, dried with MgSO4, and evaporated to dryness under reduced pressure. The residue was chromatographed on silica gel, and the fraction containing the product was collected and evaporated to dryness. Spectral Information for Compound 1 1H NMR (500 MHz, CDCl3, 20 °C): δ = 7.45 (s, 1 H), 7.36–7.38 (m, 1 H), 7.27 (d, J = 5.0 Hz, 1 H), 7.16 (d, J = 16.0 Hz, 1 H), 5.99–6.07 (m, 1 H) ppm.13C NMR (126 MHz, CDCl3, 20 °C): δ = 136.60, 133.53 (t, J = 10.1 Hz), 127.54, 127.32, 124.93, 114.03 (t, J = 10.1 Hz) ppm. 19F NMR (471 MHz, CDCl3, 20 °C): δ = –80.66 (t, J = 9.8 Hz, 3 F), –110.96 (q, J = 12.2 Hz, 2 F), –121.28 (m, 2 F), –121.82 (m, 4 F), –122.62 (m, 2 F), –123.06 (m, 2 F), –126.01 (m, 2 F) ppm. DART MS: m/z calcd for [C14H5F17S]+: 527.9841; found: 527.9862.
- 26 Geng Y, Tajima K, Hashimoto K. Macromol. Rapid Commun. 2011; 32: 1478
- 27 Turner DJ, Anémian R, Mackie PR, Cupertino DC, Yeates SG, Turner ML, Spivey AC. Org. Biomol. Chem. 2007; 5: 1752
- 28 Grand C, Zajaczkowski W, Deb N, Lo CK, Hernandez JL, Bucknall DG, Müllen K, Pisula W, Reynolds JR. ACS Appl. Mater. Interfaces 2017; 9: 13357
- 29 Wang Q, Takita R, Kikuzaki Y, Ozawa F. J. Am. Chem. Soc. 2010; 132: 11420
- 30 Pankow RM, Thompson BC. Polym. Chem. 2020; 11: 630
- 31 Po R, Bianchi G, Carbonera C, Pellegrino A. Macromolecules 2015; 48: 453
- 32 Roncali J. Chem. Rev. 1997; 97: 173
- 33 Huang Y, Wang Y, Sang G, Zhou E, Huo L, Liu Y, Li Y. J. Phys. Chem. B 2008; 112: 13476
- 34 Li J, Savagatrup S, Nelson Z, Yoshinaga K, Swager TM. Proc. Natl. Acad. Sci. U.S.A. 2020; 117: 11923
- 35 Yoshinaga K, Delage-Laurin L, Swager TM. J. Porphyrins Phthalocyanines 2020; 24: 1074