Subscribe to RSS
DOI: 10.1055/s-0040-1719829
Experimental Electrochemical Potentials of Nickel Complexes
This work was supported by the National Science Foundation under Award Number CHE-1654483.
Abstract
Nickel-catalyzed cross-coupling and photoredox catalytic reactions has found widespread utilities in organic synthesis. Redox processes are key intermediate steps in many catalytic cycles. As a result, it is pertinent to measure and document the redox potentials of various nickel species as precatalysts, catalysts, and intermediates. The redox potentials of a transition-metal complex are governed by its oxidation state, ligand, and the solvent environment. This article tabulates experimentally measured redox potentials of nickel complexes supported on common ligands under various conditions. This review article serves as a versatile tool to help synthetic organic and organometallic chemists evaluate the feasibility and kinetics of redox events occurring at the nickel center, when designing catalytic reactions and preparing nickel complexes.
1 Introduction
1.1 Scope
1.2 Measurement of Formal Redox Potentials
1.3 Redox Potentials in Nonaqueous Solution
2 Redox Potentials of Nickel Complexes
2.1 Redox Potentials of (Phosphine)Ni Complexes
2.2 Redox Potentials of (Nitrogen)Ni Complexes
2.3 Redox Potentials of (NHC)Ni Complexes
Publication History
Received: 21 July 2021
Accepted after revision: 10 August 2021
Article published online:
26 August 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 2a Shaw MH, Twilton J, MacMillan DW. J. Org. Chem. 2016; 81: 6898
- 2b Skubi KL. Blum T. R. 2016; 116: 10035
- 2c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 2d Staveness D, Bosque I, Stephenson CR. J. Acc. Chem. Res. 2016; 49: 2295
- 3a Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 3b Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 6018
- 3c Kärkäs MD. Chem. Soc. Rev. 2018; 47: 5786
- 4 Scholz F. In Electroanalytical Methods: Guide to Experiments and Applications, 2nd ed., Vol. 210. Scholz F. Springer; Berlin: 2002: 20
- 5 Roth H, Romero N, Nicewicz DA. Synlett 2015; 27: 714
- 6a Diccianni J, Lin Q, Diao T. Acc. Chem. Res. 2020; 53: 906
- 6b Gu NX, Oyala PH, Peters JC. J. Am. Chem. Soc. 2020; 142: 7827
- 6c Bour JR, Ferguson DM, McClain EJ, Kampf JW, Sanford MS. J. Am. Chem. Soc. 2019; 141: 8914
- 6d Bismuto A, Müller P, Finkelstein P, Trapp N, Jeschke G, Morandi B. J. Am. Chem. Soc. 2021; 143: 10642
- 6e Lipschutz MI, Tilley TD. Angew. Chem. Int. Ed. 2014; 53: 7290
- 7a Costentin C, Savéant J.-M. ChemElectroChem 2014; 1: 1226
- 7b Rountree ES, McCarthy BD, Eisenhart TT, Dempsey JL. Inorg. Chem. 2014; 53: 9983
- 8 Sandford C, Edwards MA, Klunder KJ, Hickey DP, Li M, Barman K, Sigman MS, White HS, Minteer SD. Chem. Sci. 2019; 10: 6404
- 9 Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL. J. Chem. Educ. 2017; 95: 197
- 10 Gritzner G, Kuta J. Pure Appl. Chem. 1984; 56: 461
- 11 Nishinaga T. Organic Redox Systems: Synthesis, Properties, and Applications. Wiley; Hoboken, NJ: 2015: 4
- 12 Connelly NG, Geiger WE. Chem. Rev. 1996; 96: 877
- 13 Bao D, Millare B, Xia W, Steyer BG, Gerasimenko AA, Ferreira A, Contreras A, Vullev VI. J. Phys. Chem. A 2009; 113: 1259
- 14 Ikhile MI, Bala MD, Nyamori VO, Ngila JC. Appl. Organomet. Chem. 2013; 27: 98
- 15 Khubaeva TO, Zakaeva RS. Russ. J. Gen. Chem. 2012; 82: 446
- 16 Yu T, Yang F, Chen X, Su W, Zhao Y, Zhang H, Li J. New J. Chem. 2017; 41: 2046
- 17 Cabeza JA, del Río I, Pérez-Carreño E, Pruneda V. Organometallics 2011; 30: 1148
- 18 Murray PR, Crawford S, Dawson A, Delf A, Findlay C, Jack L, McInnes EJ. L, Al-Musharafi S, Nichol GS, Oswald I, Yellowlees LJ. Dalton Trans. 2012; 41: 201
- 19 Dubois D, Moninot G, Kutner W, Jones MT, Kadish KM. J. Phys. Chem. 1992; 96: 7137
- 20 Diccianni JB, Diao T. Trends in Chemistry 2019; 1: 830
- 21 Diccianni JB, Katigbak J, Hu C, Diao T. J. Am. Chem. Soc. 2019; 141: 1788
- 22 MacBeth CE, Thomas JC, Betley TA, Peters JC. Inorg. Chem. 2004; 43: 4645
- 23 Sahoo D, Yoo C, Lee Y. J. Am. Chem. Soc. 2018; 140: 2179
- 24 Dickie DA, Chacon BE, Issabekov A, Lam K, Kemp RA. Inorg. Chim. Acta 2016; 453: 42
- 25 Yang JY, Chen S, Dougherty WG, Kassel WS, Bullock RM, DuBois DL, Raugei S, Rousseau R, Dupuis M, Rakowski DuBois M. Chem. Commun. 2010; 46: 8618
- 26 Berning DE, Noll BC, DuBois DL. J. Am. Chem. Soc. 1999; 121: 11432
- 27 Koch F, Berkefeld A. Dalton Trans. 2018; 47: 10561
- 28 Doud MD, Grice KA, Lilio AM, Seu CS, Kubiak CP. Organometallics 2012; 31: 779
- 29 Khrizanforova VV, Morozov VI, Strelnik AG, Spiridonova YS, Khrizanforov MN, Burganov TI, Katsyuba SA, Latypov SK, Kadirov MK, Karasik AA, Sinyashin OG, Budnikova YH. Electrochim. Acta 2017; 225: 467
- 30 Takahashi K, Cho K, Iwai A, Ito T, Iwasawa N. Chem. Eur. J. 2019; 25: 13504
- 31 Pilloni G, Toffoletti A, Bandoli G, Longato B. Inorg. Chem. 2006; 45: 10321
- 32 DuBois DL, Miedaner A. J. Am. Chem. Soc. 1987; 109: 113
- 33 Eckert NA, Dougherty WG, Yap GP. A, Riordan CG. J. Am. Chem. Soc. 2007; 129: 9286
- 34 Berning DE, Miedaner A, Curtis CJ, Noll BC, Rakowski DuBois MC, DuBois DL. Organometallics 2001; 20: 1832
- 35 Essex LA, Taylor JW, Harman WH. Tetrahedron 2019; 75: 2255
- 36 Bontempelli G, Magno F, De Nobili M, Schiavon G. J. Chem. Soc., Dalton Trans. 1980; 2288
- 37 Tereniak SJ, Marlier EE, Lu CC. Dalton Trans. 2012; 41: 7862
- 38 Bowmaker GA, Boyd PD. W, Campbell GK. Inorg. Chem. 1982; 21: 2403
- 39 Luca OR, Blakemore JD, Konezny SJ, Praetorius JM, Schmeier TJ, Hunsinger GB, Batista VS, Brudvig GW, Hazari N, Crabtree RH. Inorg. Chem. 2012; 51: 8704
- 40 Arumugam K, Selvachandran M, Obanda A, Shaw MC, Chandrasekaran P, Caston Good SL, Mague JT, Sproules S, Donahue JP. Inorg. Chem. 2018; 57: 4023
- 41 Kitiachvili KD, Mindiola DJ, Hillhouse GL. J. Am. Chem. Soc. 2004; 126: 10554
- 42 Yerlikaya G, Tapanyiğit EB, Güzel B, Şahin O, Kardaş G. J. Mol. Struct. 2019; 1198: 126889
- 43 Lapointe S, Khaskin E, Fayzullin RR, Khusnutdinova JR. Organometallics 2019; 38: 4433
- 44 Xiao Z, Natarajan M, Zhong W, Liu X. Electrochim. Acta 2020; 340: 135998
- 45 Mautz J, Huttner G. Eur. J. Inorg. Chem. 2008; 1423
- 46 Chavez CA, Choi J, Nesterov EE. Macromolecules 2014; 47: 506
- 47 Wilson AD, Fraze K, Twamley B, Miller SM, DuBois DL, Rakowski DuBois M. J. Am. Chem. Soc. 2008; 130: 1061
- 48 Zanello P, Cinquantini A, Ghilardi CA, Midollini S, Moneti S, Orlandini A, Bencini A. J. Chem. Soc., Dalton Trans. 1990; 3761
- 49 Fourie E, Swarts JC, Chambrier I, Cook MJ. Dalton Trans. 2009; 1145
- 50 Stewart MP, Ho M.-H, Wiese S, Lindstrom ML, Thogerson CE, Raugei S, Bullock RM, Helm ML. J. Am. Chem. Soc. 2013; 135: 6033
- 51 Amatore C, Azzabi M, Calas P, Jutand A, Lefrou C, Rollin Y. J. Electroanal. Chem. 1990; 288: 45
- 52 Higgins SJ, Levason W, Feiters MC, Steel AT. J. Chem. Soc., Dalton Trans. 1986; 317
- 53 Hagopian LE, Campbell AN, Golen JA, Rheingold AL, Nataro C. J. Organomet. Chem. 2006; 691: 4890
- 54 Ramakrishnan S, Chakraborty S, Brennessel WW, Chidsey CE. D, Jones WD. Chem. Sci. 2016; 7: 117
- 55 Hwang SJ, Anderson BL, Powers DC, Maher AG, Hadt RG, Nocera DG. Organometallics 2015; 34: 4766
- 56 Salah AB, Zargarian D. Dalton Trans. 2011; 40: 8977
- 57 Vabre B, Spasyuk DM, Zargarian D. Organometallics 2012; 31: 8561
- 58a Zhu C, Yue H, Chu L, Rueping M. Chem. Sci. 2020; 11: 4051
- 58b Dong Y, Lund CJ, Porter GJ, Clarke RM, Zheng S.-L, Cundari TR, Betley TA. J. Am. Chem. Soc. 2021; 143: 817
- 58c Ciszewski JT, Mikhaylov DY, Holin KV, Kadirov MK, Budnikova YH, Sinyashin O, Vicic DA. Inorg. Chem. 2011; 50: 8630
- 58d Wagner CL, Herrera G, Lin Q, Hu CT, Diao T. J. Am. Chem. Soc. 2021; 143: 5295
- 59 Van Hecke GR, Horrocks WD. Inorg. Chem. 1966; 5: 1960
- 60 Schley ND, Fu GC. J. Am. Chem. Soc. 2014; 136: 16588
- 61 Reineke MH, Porter TM, Ostericher AL, Kubiak CP. Organometallics 2018; 37: 448
- 62 Thoi VS, Kornienko N, Margarit CG, Yang P, Chang CJ. J. Am. Chem. Soc. 2013; 135: 14413
- 63 Sahoo B, Bellotti P, Juliá-Hernández F, Meng Q.-Y, Crespi S, König B, Martin R. Chem. Eur. J. 2019; 25: 9001
- 64 Khrizanforova VV, Fayzullin RR, Morozov VI, Gilmutdinov IF, Lukoyanov AN, Kataeva ON, Gerasimova TP, Katsyuba SA, Fedushkin IL, Lyssenko KA. Chem. Asian J. 2019; 14: 2979
- 65 Narayanan R, McKinnon M, Reed BR, Ngo KT, Groysman S, Rochford J. Dalton Trans. 2016; 45: 15285
- 66 Sondermann C, Ringenberg MR. Dalton Trans. 2017; 46: 5143
- 67 Buonomo RM, Reibenspies JH, Darensbourg MY. Chem. Ber. 1996; 129: 779
- 68 Lintvedt RL, Ranger G, Kramer LS. Inorg. Chem. 1986; 25: 2635
- 69 Klein A, Kaiser A, Sarkar B, Wanner M, Fiedler J. Eur. J. Inorg. Chem. 2007; 965
- 70 Klein A, Rausch B, Kaiser A, Vogt N, Krest A. J. Organomet. Chem. 2014; 774: 86
- 71 Olivero S, Rolland J.-P, Duñach E. Organometallics 1998; 17: 3747
- 72 Azevedo F, Freire C, de Castro B. Polyhedron 2002; 21: 1695
- 73 Arana C, Keshavarz M, Potts KT, Abruña HD. Inorg. Chim. Acta 1994; 225: 285
- 74 Srinivasulu K, Reddy KH, Anuja K, Dhanalakshmi D, Ramesh G. Asian J. Chem. 2019; 31: 1905
- 75 Barefield EK, Freeman GM, Van Derveer DG. Inorg. Chem. 1986; 25: 552
- 76 Yao S, Xiong Y, Vogt M, Grützmacher H, Herwig C, Limberg C, Driess M. Angew. Chem. Int. Ed. 2009; 48: 8107
- 77 Pavlishchuk VV, Addison AW. Inorg. Chim. Acta 2000; 298: 97
- 78 Zhou W, Schultz JW, Rath NP, Mirica LM. J. Am. Chem. Soc. 2015; 137: 7604
- 79 van de Kuil LA, Luitjes H, Grove DM, Zwikker JW, van der Linden JG. M, Roelofsen AM, Jenneskens LW, Drenth W, van Koten G. Organometallics 1994; 13: 468
- 80 Zheng B, Tang F, Luo J, Schultz JW, Rath NP, Mirica LM. J. Am. Chem. Soc. 2014; 136: 6499
- 81 Grove DM, Van Koten G, Mul P, Zoet R, Van der Linden JG. M, Legters J, Schmitz JE. J, Murrall NW, Welch AJ. Inorg. Chem. 1988; 27: 2466
- 82 Brunker TJ, Cowley AR, O'Hare D. Organometallics 2002; 21: 3123
- 83 Kosobokov MD, Sandleben A, Vogt N, Klein A, Vicic DA. Organometallics 2018; 37: 521
- 84 Inamo M, Kumagai H, Harada U, Itoh S, Iwatsuki S, Ishihara K, Takagi HD. Dalton Trans. 2004; 1703
- 85 Goldsby KA, Jircitano AJ, Minahan DM, Ramprasad D, Busch DH. Inorg. Chem. 1987; 26: 2651
- 86 Fang Y, Senge MO, Van Caemelbecke E, Smith KM, Medforth CJ, Zhang M, Kadish KM. Inorg. Chem. 2014; 53: 10772
- 87 Khrizanforov MN, Fedorenko SV, Mustafina AR, Khrizanforova VV, Kholin KV, Nizameev IR, Gryaznova TV, Grinenko VV, Budnikova YH. RSC Adv. 2019; 9: 22627
- 88 Henne BJ, Bartak DE. Inorg. Chem. 1984; 23: 369
- 89 Meucci EA, Nguyen SN, Camasso NM, Chong E, Ariafard A, Canty AJ, Sanford MS. J. Am. Chem. Soc. 2019; 141: 12872
- 90 Schultz JW, Fuchigami K, Zheng B, Rath NP, Mirica LM. J. Am. Chem. Soc. 2016; 138: 12928
- 91 Cloutier J.-P, Zargarian D. Organometallics 2018; 37: 1446
- 92 Kühl O. Chem. Rev. 2018; 118: 9988
- 93 Hu X, Castro-Rodriguez I, Meyer K. Chem. Commun. 2004; 2164
- 94 Laskowski CA, Hillhouse GL. J. Am. Chem. Soc. 2008; 130: 13846
- 95 Poulten RC, Page MJ, Algarra AG, Le Roy JJ, López I, Carter E, Llobet A, Macgregor SA, Mahon MF, Murphy DM, Murugesu M, Whittlesey MK. J. Am. Chem. Soc. 2013; 135: 13640
- 96 Tian Y.-M, Guo X.-N, Kuntze-Fechner MW, Krummenacher I, Braunschweig H, Radius U, Steffen A, Marder TB. J. Am. Chem. Soc. 2018; 140: 17612
- 97 Wu J, Nova A, Balcells D, Brudvig GW, Dai W, Guard LM, Hazari N, Lin P.-H, Pokhrel R, Takase MK. Chem. Eur. J. 2014; 20: 5327
- 98 Kureja K, Bruhn C, Ringenberg MR, Siemeling U. Inorg. Chem. 2019; 58: 16256
- 99 Luo S, Bruggeman DF, Siegler MA, Bouwman E. Inorg. Chim. Acta 2018; 477: 24
- 100 Luca OR, Thompson BA, Takase MK, Crabtree RH. J. Organomet. Chem. 2013; 730: 79
- 101 Pelties S, Herrmann D, de Bruin B, Hartl F, Wolf R. Chem. Commun. 2014; 50: 7014
- 102 Valdés H, Poyatos M, Ujaque G, Peris E. Chem. Eur. J. 2015; 21: 1578
- 103 Obanda A, Martinez K, Schmehl RH, Mague JT, Rubtsov IV, MacMillan SN, Lancaster KM, Sproules S, Donahue JP. Inorg. Chem. 2017; 56: 10257
- 104 Gandara C, Philouze C, Jarjayes O, Thomas F. Inorg. Chim. Acta 2018; 482: 561
- 105 Wang Z, Zheng T, Sun H, Li X, Fuhr O, Fenske D. New J. Chem. 2018; 42: 11465
- 106 Martinez GE, Ocampo C, Park YJ, Fout AR. J. Am. Chem. Soc. 2016; 138: 4290