Synthesis 2022; 54(04): 965-974
DOI: 10.1055/s-0040-1719838
special topic
Cycloadditions – Established and Novel Trends – in Celebration of the 70th Anniversary of the Nobel Prize Awarded to Otto Diels and Kurt Alder

Stereo- and Regioselective [3+2] Cycloaddition of Acetoxy Allenoates with Azides: Metal-Free Synthesis of Multisubstituted Triazoles

Asif Ali Qureshi
,
Arpula Sanjeeva Kumar
,
Sachin Chauhan
,
K. C. Kumara Swamy
Funding and fellowships came from the Science and Engineering Research Board (SERB) as a J. C. Bose fellowship (JBR/2020/000038), the University Grants Commission (UGC), the Dr. D. S. Kothari Postdoctoral Fellowship Scheme (DSKPDF), and the University of Hyderabad.


Abstract

We have developed a regio- and stereoselective thermal [3+2]-cycloaddition protocol involving acetoxy allenoates as 1,2-dipoles under metal-free conditions for the synthesis of 1,4,5-tri/1,5-disubstituted 1,2,3-triazoles. δ-Acetoxy allenoates act as α- and β-carbon donors and lead to trisubstituted 1,2,3-triazoles with an alkenyl functionality at the 5-position. In sharp contrast to this, β- and γ-carbons participate in the case of β′-acetoxy allenoates to afford 1,5-disubstituted triazole cores. This [3+2] cycloaddition shows a broad substrate scope concerning acetoxy allenoate as well as azide and offers essentially E-stereoisomers in good to high yields. Divergently, the reaction of δ-acetoxy allenoate with trimethylsilyl azide gives an acyclic, nitrogen-inserted product with the cleavage of C–C bonds.

Supporting Information



Publication History

Received: 17 July 2021

Accepted after revision: 18 August 2021

Article published online:
12 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Reviews:
    • 2a Ye L.-W, Zhou J, Tang Y. Chem. Soc. Rev. 2008; 37: 1140
    • 2b Zhao Q.-Y, Lian Z, Wei Y, Shi M. Chem. Commun. 2012; 48: 1724
    • 2c Gomez C, Betzer J.-F, Voituriez A, Marinetti A. ChemCatChem 2013; 5: 1055
    • 2d Wang Z, Xu X, Kwon O. Chem. Soc. Rev. 2014; 43: 2927
    • 2e Kumara Swamy KC, Anitha M, Debnath S, Shankar M. Pure Appl. Chem. 2019; 91: 773
    • 2f Li E.-Q, Huang Y. Chem. Commun. 2020; 56: 680
    • 3a Xiao H, Chai Z, Zheng C.-W, Yang Y.-Q, Liu W, Zhang J.-K, Zhao G. Angew. Chem. Int. Ed. 2010; 49: 4467
    • 3b Sajna KV, Ramesh K, Chakravarty M, Bhuvan Kumar NN, Kumara Swamy KC. J. Org. Chem. 2011; 76: 920
    • 3c Zhang Q, Meng L.-G, Zhang J, Wang L. Org. Lett. 2015; 17: 3272
    • 3d Li E, Chang M, Liang L, Huang Y. Eur. J. Org. Chem. 2015; 710
    • 3e Kumari AL. S, Kumara Swamy KC. J. Org. Chem. 2015; 80: 4084
    • 3f Zhou W, Wang H, Tao M, Zhu C.-Z, Lin T.-Y, Zhang J. Chem. Sci. 2017; 8: 4660
    • 3g Gan Z, Gong Y, Chu Y, Li E.-Q, Huang Y, Duan Z. Chem. Commun. 2019; 55: 10120
    • 3h Shi W, Mao B, Xu J, Wang Q, Wang W, Wu Y, Li X, Guo H. Org. Lett. 2020; 22: 2675
    • 3i Liu T, He C, Wang F, Shen X, Li Y, Lang M, Li G, Huang C, Cheng F. Synthesis 2021; 53: 518

      See for δ-acetoxy allenoates:
    • 4a Zhang Q, Yang L, Tong X. J. Am. Chem. Soc. 2010; 132: 2550
    • 4b Hu J, Tian B, Wu X, Tong X. Org. Lett. 2012; 14: 5074
    • 4c Zhou W, Ni C, Chen J, Wang D, Tong X. Org. Lett. 2017; 19: 1890
    • 4d Xing J.-J, Gao Y.-N, Shi M. Adv. Synth. Catal. 2018; 360: 2552
    • 4e Xu T, Wang D, Liu W, Tong X. Org. Lett. 2019; 21: 1944
    • 4f Arupula SK, Qureshi AA, Kumara Swamy KC. J. Org. Chem. 2020; 85: 4130
    • 4g Zhu Y, Huang Y. Org. Lett. 2020; 22: 6750
    • 4h Kumar AS, Chauhan S, Kumara Swamy KC. Org. Lett. 2021; 23: 1123
    • 5a Gu Y, Hu P, Ni C, Tong X. J. Am. Chem. Soc. 2015; 137: 6400
    • 5b Li F, Chen J, Hou Y, Li Y, Wu X.-Y, Tong X. Org. Lett. 2015; 17: 5376
    • 5c Lei Y, Xing J.-J, Xu Q, Shi M. Eur. J. Org. Chem. 2016; 3486
    • 5d Dai Z, Zhu J, Wang J, Su W, Yang F, Zhou Q. Adv. Synth. Catal. 2020; 362: 545
    • 6a Kallander LS, Lu Q, Chen W, Tomaszek T, Yang G, Tew D, Meek TD, Hofmann GA, Schulz-Pritchard CK, Smith WW, Janson CA, Ryan MD, Zhang G.-F, Johanson KO, Kirkpatrick RB, Ho TF, Fisher PW, Mattern MR, Johnson RK, Hansbury MJ, Winkler JD, Ward KW, Veber DF, Thompson SK. J. Med. Chem. 2005; 48: 5644
    • 6b Angell YL, Burgess K. Chem. Soc. Rev. 2007; 36: 1674
    • 6c Tam A, Arnold U, Soellner MB, Raines RT. J. Am. Chem. Soc. 2007; 129: 12670
    • 6d Ito S, Satoh A, Nagatomi Y, Hirata Y, Suzuki G, Kimura T, Satow A, Maehara S, Hikichi H, Hata M, Kawamoto H, Ohta H. Bioorg. Med. Chem. 2008; 16: 9817
    • 6e Tsuritani T, Mizuno H, Nonoyama N, Kii S, Akao A, Sato K, Yasuda N, Mase T. Org. Process Res. Dev. 2009; 13: 1407
    • 6f Ito S, Hirata Y, Nagatomi Y, Satoh A, Suzuki G, Kimura T, Satow A, Maehara S, Hikichi H, Hata M. Bioorg. Med. Chem. Lett. 2009; 19: 5310
    • 6g Holub JM, Kirshenbaum K. Chem. Soc. Rev. 2010; 39: 1325
    • 6h Agalave SG, Maujan SR, Pore VS. Chem. Asian J. 2011; 6: 2696
    • 6i Fujinaga M, Yamasaki T, Kawamura K, Kumata K, Hatori A, Yui J, Yanamoto K, Yoshida Y, Ogawa M, Nengaki N, Maeda J, Fukumura T, Zhang M.-R. Bioorg. Med. Chem. 2011; 19: 102
    • 6j Valverde IE, Bauman A, Kluba CA, Vomstein S, Walter MA, Mindt TL. Angew. Chem. Int. Ed. 2013; 52: 8957
    • 6k Thirumurugan P, Matosiuk D, Jozwiak K. Chem. Rev. 2013; 113: 4905
    • 7a Mohammed I, Kummetha IR, Singh G, Sharova N, Lichinchi G, Dang J, Stevenson M, Rana TM. J. Med. Chem. 2016; 59: 7677
    • 7b Bonandi E, Christodoulou MS, Fumagalli G, Perdicchia D, Rastelli G, Passarella D. Drug Discovery Today 2017; 22: 1572
    • 8a Wang C, Ikhlef D, Kahlal S, Saillard J.-Y, Astruc D. Coord. Chem. Rev. 2016; 316: 1
    • 8b Chen Z, Liu Z, Cao G, Li H, Ren H. Adv. Synth. Catal. 2017; 359: 202
    • 8c Surendra GR, Anebouselvy K, Ramachary DB. Chem. Asian J. 2020; 15: 2960
    • 9a Bleiholder RF, Shechter H. J. Am. Chem. Soc. 1968; 90: 2131
    • 9b Wedegaertner DK, Kattak RK, Harrison I, Cristie SK. J. Org. Chem. 1991; 56: 4463
    • 9c Ramachary DB, Shashank AB, Karthik S. Angew. Chem. Int. Ed. 2014; 53: 10420
    • 9d Sebest F, Casarrubios L, Rzepa HS, White AJ. P, Díez-González S. Green Chem. 2018; 20: 4023
    • 9e Giel MC, Smedley CC. J, Mackie ER. R, Guo T, Dong J, Soares da Costa TP, Moses JE. Angew. Chem. Int. Ed. 2020; 59: 1181
    • 9f Mali M, Jayaram V, Sharma GV. M, Ghosh S, Berrée F, Dorcet V, Carboni B. J. Org. Chem. 2020; 85: 15104
    • 9g Cui X, Zhang X, Wang W, Zhong X, Tan Y, Wang Y, Zhang J, Li Y, Wang X. J. Org. Chem. 2021; 86: 4071
    • 9h Majeed K, Wang L, Liu B, Guo Z, Zhou F, Zhang Q. J. Org. Chem. 2021; 86: 207
    • 10a Huisgen R. Proc. Chem. Soc., London 1961; 357
    • 10b Huisgen R. Angew. Chem. Int. Ed. 1963; 2: 565
    • 10c Huisgen R. Angew. Chem. Int. Ed. 1963; 2: 633
    • 11a Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 11b Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
  • 12 Tornøe CW, Christensen C, Meldal MP. J. Org. Chem. 2002; 67: 3057
    • 13a Zhang L, Chen X, Xue P, Sun HH. Y, Williams ID, Sharpless KB, Fokin VV, Jia G. J. Am. Chem. Soc. 2005; 127: 15998
    • 13b Boren BC, Narayan S, Rasmussen LK, Zhang L, Zhao H, Lin Z, Jia G, Fokin VV. J. Am. Chem. Soc. 2008; 130: 8923
    • 13c Ding S, Jia G, Sun J. Angew. Chem. Int. Ed. 2014; 53: 1877
    • 13d Luo Q, Jia G, Sun J, Lin Z. J. Org. Chem. 2014; 79: 11970
    • 13e Lal S, Rzepa HS, Díez-González S. ACS Catal. 2014; 4: 2274
    • 13f Johansson JR, Beke-Somfai T, Stálsmeden AS, Kann N. Chem. Rev. 2016; 116: 14726
    • 13g Liao Y, Lu Q, Chen G, Yu Y, Li C, Huang X. ACS Catal. 2017; 7: 7529
    • 13h Song W, Zheng N, Li M, Ullah K, Zheng Y. Adv. Synth. Catal. 2018; 360: 2429
    • 13i Song W, Zheng N, Li M, Dong K, Li J, Ullah K, Zheng Y. Org. Lett. 2018; 20: 6705
    • 14a Kumaraswamy S, Kommana P, Kumar NS, Kumara Swamy KC. Chem. Commun. 2002; 40
    • 14b Chakravarty M, Bhuvan Kumar NN, Sajna KV, Kumara Swamy KC. Eur. J. Org. Chem. 2008; 4500
    • 14c Reddy MN, Kumara Swamy KC. Eur. J. Org. Chem. 2012; 2013
    • 14d Sajna KV, Kumara Swamy KC. J. Org. Chem. 2012; 77: 8712
    • 14e Reddy MN, Kumara Swamy KC. Org. Biomol. Chem. 2013; 11: 7350
    • 14f Reddy AS, Reddy MN, Kumara Swamy KC. RSC Adv. 2014; 4: 28359
    • 14g Kumari AL. S, Kumara Swamy KC. J. Org. Chem. 2016; 81: 1425
    • 15a Pavan MP, Chakravarty M, Kumara Swamy KC. Eur. J. Org. Chem. 2009; 5927
    • 15b Gangadhararao G, Tulichala RN. P, Kumara Swamy KC. Chem. Commun. 2015; 51: 7168
    • 15c Anitha M, Kumara Swamy KC. Org. Biomol. Chem. 2019; 17: 5736
  • 16 CCDC 2097131 (3ff) and 2097132 (7ak) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 17 Hurtado-Rodrigo C, Hoehne S, Muňoz MP. Chem. Commun. 2014; 50: 1494
  • 18 Selig P, Nghiem T.-L. Synlett 2015; 26: 907