Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2022; 54(04): 1101-1107
DOI: 10.1055/s-0040-1719858
DOI: 10.1055/s-0040-1719858
special topic
Cycloadditions – Established and Novel Trends – in Celebration of the 70th Anniversary of the Nobel Prize Awarded to Otto Diels and Kurt Alder
An Approach to the Synthesis of a Hepatitis C Virus Inhibitor through a Proline-Catalyzed 1,3-Dipolar Cycloaddition Using Acrolein
This research was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (MCIU) through the project FEDER-CTQ2017-83633P and FEDERPID2020-118422-GB-I00 and the Basque Government (Grupos IT908-16).
Abstract
An efficient and easy protocol for performing 1,3-dipolar cycloaddition using azomethine ylides and acrolein is presented. The reaction catalyzed by d-proline allows the synthesis of C-3 unsubstituted pyrrolidines. The application of this methodology to the synthesis of an advanced intermediate in the preparation of a Hepatitis C virus inhibitor is presented. Final attempts to complete the synthesis of the target inhibitor results in the preparation of its C-4 epimer in good overall yield.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1719858.
- Supporting Information
Publication History
Received: 15 October 2021
Accepted after revision: 15 November 2021
Article published online:
06 December 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 For a review covering the history and protagonists of the Huisgen reaction, see: Breugst M, Reissig H.-U. Angew. Chem. Int. Ed. 2020; 59: 12293
- 2a Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
- 2b Engels B, Christl M. Angew. Chem. Int. Ed. 2009; 48: 7968
- 2c Chiacchio U, Padwa A, Romeo G. Curr. Org. Chem. 2009; 13: 422
- 2d Pellissier H. Tetrahedron 2007; 63: 3235
- 2e Nair V, Suja TD. Tetrahedron 2007; 63: 12247
- 2f Kanemasa S. Synlett 2002; 1371
- 2g Gothelf KV, Jorgensen KA. Chem. Rev. 1998; 98: 863
- 3a Thakur S, Das A, Das T. New J. Chem. 2021; 45: 11420
- 3b Roscales S, Plumet J. Heterocycles 2019; 99: 725
- 3c Kissane M, Maguire AR. Chem. Soc. Rev. 2010; 39: 845
- 3d Stanley LM, Sibi MP. Chem. Rev. 2008; 108: 2887
- 4 Buchner E, Fritsch M, Papendieck A, Witter H. Justus Liebigs Ann. Chem. 1893; 273: 214
- 5 Huisgen R. Angew. Chem., Int. Ed. Engl. 1963; 2: 565
- 6 Huisgen R. In 1,3-Dipolar Cycloaddition Chemistry, Vol. 1. Padwa A. Wiley; New York: 1984: 1
- 7a Adrio J, Carretero JC. Chem. Commun. 2014; 50: 12434
- 7b Adrio J, Carretero JC. Chem. Commun. 2011; 47: 6784
- 7c Najera C, Sansano JM, Yus M. J. Braz. Chem. Soc. 2010; 21: 377
- 7d Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
- 7e Coldham I, Hufton R. Chem. Rev. 2005; 105: 2765
- 7f Husinec S, Savic V. Tetrahedron: Asymmetry 2005; 16: 2047
- 8a O’Hagan D. Nat. Prod. Rep. 2000; 17: 435
- 8b O’Hagan D. Nat. Prod. Rep. 1997; 14: 637
- 8c Mauger AB. J. Nat. Prod. 1996; 59: 1205
- 8d Plunkett AO. Nat. Prod. Rep. 1994; 11: 581
- 8e Pinder AR. Nat. Prod. Rep. 1992; 9: 491
- 8f Robinson T. Pyrrolidine, Piperidine, and Pyridine Alkaloids. In The Biochemistry of Alkaloids. Molecular Biology Biochemistry and Biophysics, Vol. 3. Springer; Berlin: 1981: 35
- 9 Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
- 10 Zhang S, Wang W. Proline Derivatives . In Privileged Chiral Ligands and Catalysts . Zhou Q.-L. Wiley-VCH; Weinheim, 2011; 409;
- 11a Xi C.-C, Zhao X.-J, Tian J.-M, Chen Z.-M, Zhang K, Zhang F.-M, Tu Y.-Q, Dong J.-W. Org. Lett. 2020; 22: 4995
- 11b Bootsma J, Guo B, de Vries JG, Otten E. Organometallics 2020; 39: 544
- 11c Mercade E, Zangrando E, Clotet A, Claver C, Godard C. Eur. J. Inorg. Chem. 2019; 4211
- 11d Gavrilov KN, Mikhel IS, Chuchelkin IV, Zheglov SV, Gavrilov VK, Birin KP, Tafeenko VA, Chernyshev VV, Goulioukina NS, Beletskaya IP. ChemistrySelect 2016; 1: 4173
- 11e Sergeeva E, Kopilov J, Goldberg I, Kol M. Chem. Commun. 2009; 3053
- 12a Vicario JL, Reboredo S, Carrillo S, Badia L. Angew. Chem. Int. Ed. 2007; 46: 5168
- 12b Ugarriza I, Uria U, Reyes E, Carrillo L, Vicario JL. Asymmetric Catal. 2015; 2: 26
- 12c Reboredo S, Garcia-Marijuan A, Uria U, Reyes E, Carrillo L, Ugarriza I, Viario JL. Org. Chem. Front. 2018; 5: 933
- 12d Reboredo S, Vicario JL, Carrillo L, Reyes E, Uria U. Synthesis 2013; 45: 2669
- 12e Reboredo S, Reyes E, Vicario JL, Badia D, Carrillo L, Cozar A, Cossio FP. Chem. Eur. J. 2012; 18: 7179
- 12f Fernández N, Carrillo L, Vicario JL, Badia D, Reyes E. Chem. Commun. 2011; 47: 12313
- 12g Reboredo S, Vicario JL, Badia D, Carrillo L, Reyes E. Adv. Synth. Catal. 2011; 353: 3307
- 12h Iza A, Carrillo L, Vicario JL, Badia D, Reyes E. Org. Biomol. Chem. 2010; 8: 2238
- 13a Rios R, Ibrahem I, Vesely J, Sundén H, Córdova A. Tetrahedron Lett. 2007; 48: 8695
- 13b Ibrahem I, Rios R, Vesely J, Cordova A. Tetrahedron Lett. 2007; 48: 6252
- 13c Lin S, Deiana L, Zhao G.-L, Sun J, Córdova A. Angew. Chem. Int. Ed. 2011; 50: 7624
- 14a Burton G, Ku TW, Carr TJ, Kiesow T, Sarisky RT, Lin-Goerke J, Baker A, Earnshaw DL, Hofmann GA, Keenan RM, Dhanak D. Bioorg. Med. Chem. Lett. 2005; 15: 1553
- 14b Burton G, Ku TW, Carr TJ, Kiesow T, Sarisky RT, Lin-Goerke J, Hofmann GA, Slater MJ, Haigh D, Dhanak D, Johnson VK, Parry NR, Thomes P. Bioorg. Med. Chem. Lett. 2007; 17: 1930
- 15a Najera C, Retamosa MG, Sansano JM, Cozar A, Cossio FP. Eur. J. Org. Chem. 2007; 5038
- 15b Najera C, Retamosa MG, Martín-Rodriguez M, Sansano JM, Cozar A, Cossio FP. Eur. J. Org. Chem. 2009; 5622
- 15c Martín-Rodriguez M, Najera C, Sansano JM, Cozar A, Cossio FP. Beilstein J. Org. Chem. 2011; 7: 988
- 15d Agbodjan AA, Cooley BE, Copley RC. B, Corfield JA, Flanagan RC, Glover BN, Cguidetti R, Haigh D, Howes PD, Jackson MM, Matsuoka RT, Medhurst KJ, Millar A, Sharp MJ, Slater MJ, Toczko JF, Xie S. J. Org. Chem. 2008; 73: 3094
- 16a Zhu R.-Y, Wang C.-S, Jiang F, Shi F, Tu S.-J. Tetrahedron: Asymmetry 2014; 25: 617
- 16b Amornraksa K, Grigg R. Tetrahedron Lett. 1980; 21: 2197
- 17 The background reaction using crotonaldehyde as α,β-unsaturated aldehyde operates through a concerted transition state 32.6 Kcal/mol more energetic than starting material, as calculated using DFT methods (see ref. 12d). We hypothesize that acrolein can decrease this barrier favoring background 1,3-cycloaddition under certain reaction conditions.
- 18 Trying to improve the yield of the reduction step through increasing the reaction time or using other reducing agents led to reduction of one of the ester moieties.
- 19 Ugarriza I, Uria U, Carrillo L, Vicario JL, Reyes E. Chem. Eur. J. 2014; 20: 11650
- 20 CCDC 2115906 (9) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
- 21a Armarego WL. F, Chai CL. L. Purification of Laboratory Chemicals, 7th ed. Elsevier; Oxford: 2012
- 21b Williams DB. G, Lawton M. J. Org. Chem. 2010; 75: 8351
- 22 Stahl E. Thin Layer Chromatography . Springer Verlag; Berlin: 1969
- 23 Still WC, Kahn H, Mitra AJ. J. Org. Chem. 1978; 43: 2923
For general reviews on 1,3-dipolar cycloaddition reactions, see:
For reviews on 1,3-dipolar cycloaddition covering some specific topics, see:
General reviews covering pyrrolidine alkaloids:
For some recent examples using pyrrolidine derivatives as ligands in metal catalysis, see:
See also:
For contributions by other groups, see:
For the second and third generation of this virus inhibitor, see:
For the enantioselective synthesis of this virus inhibitor (+)-I, see:
For other enantioselective synthesis of virus inhibitor (+)-I and second and third generation of the virus inhibitor, see:
This homo-1,3-dipolar cycloaddition product derived from imines 1 was observed previously under certain reaction conditions. For the first catalytic asymmetric version under Brønsted base catalyst, see:
For the first observation of this reaction, see: