Subscribe to RSS
![](/products/assets/desktop/img/oa-logo.png)
DOI: 10.1055/s-0040-1719868
Synthesis of [1,4]Oxathiepino[5,6-b]quinolines via Base-Mediated Intramolecular Hydroalkoxylation
We are thankful to Alzahra University and the Iran National Science Foundation (INSF) for financial support.
![](https://www.thieme-connect.de/media/10.1055-s-00032269/202201/lookinside/thumbnails/so-2021-d0048-op_10-1055_s-0040-1719868-1.jpg)
This paper is dedicated to Prof. Issa Yavari.
Abstract
A base-mediated intramolecular hydroalkoxylation that was used to prepare a series of seven-membered S,O-heterocycles is described. 2-Thiopropargyl-3-hydroxymethyl quinolines were prepared starting from 2-mercaptoquinoline-3-carbaldehydes, via S-propargylation and reduction of a formyl group. Interestingly, 2-mercaptopropargyl-3-hydroxymethyl quinolines were converted into the corresponding oxathiepinoquinolines in the presence of t-BuOK. It is proposed that the S-propargyl moiety, in the presence of base, is converted into its allenyl isomer; subsequent addition of a hydroxyl group to the terminal double bond yields the 3-methyl-5H-[1,4]oxathiepino[5,6-b]quinoline in good to high yield. Notably, the procedure is adaptable to the conversion of N-propargyl indole-2-methanol into the corresponding intramolecular hydroalkoxylation product.
Key words
quinoline - 2-chloroquinoline-3-carbaldehyde - intramolecular reactions - hydroalkoxylation - base-mediated cyclization - allenesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1719868.
- Supporting Information
Publication History
Received: 24 September 2021
Accepted after revision: 20 December 2021
Article published online:
10 January 2022
© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Prajapati SM, Patel KD, Vekariya RH, Panchal SN, Patel HD. RSC Adv. 2014; 4: 24463
- 2 Uma P, Suresh J, Selvaraj R, Karthik S, Arun A. J. Biomater. Sci., Polym. Ed. 2015; 26: 128
- 3 Miyamae T. Microbiol. Immunol. 1993; 37: 213
- 4 Balasubramanian M, Keay J. Pyridines and their Benzo Derivatives: Applications. In Comprehensive Heterocyclic Chemistry. Pergamon; Oxford: 2009
- 5 Smith PW. G, Tatchell AR. Heterocyclic Chemistry . In Aromatic Chemistry, Chap. X . Smith PW. G, Tatchell AR. Pergamon; Oxford: 1969: 222
- 6 Gupta RR, Kumar M, Gupta V. Five-Membered Heterocycles . In Heterocyclic Chemistry, Vol. II. Springer-Verlag; Berlin: 1999
- 7 Smalley RK. Azepines . In Comprehensive Heterocyclic Chemistry,Chap. 5.16. Katritzky AR, Rees CW. Pergamon; Oxford: 1984: 491
- 8 Bremner JB, Samosorn S. Azepines and their Fused-ring Derivatives . In Comprehensive Heterocyclic Chemistry III,Chap. 13.01. Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Oxford: 2008: 1-43
- 9 Shu Y.-Z. J. Nat. Prod. 1998; 61: 1053
- 10 Wagstaff AJ, Ormrod D, Spencer CM. CNS Drugs 2001; 15: 231
- 11 Brydson JA. Polyamides and Polyimides . In Plastics Materials,Chap. 18, 7th ed. Brydson JA. Butterworth-Heinemann; Oxford: 1999: 478
- 12 Pozharskiĭ AF, Katritzky AR, Soldatenkov AT. Heterocycles in Life and Society, 2nd ed. Wiley; Chichester: 2011
- 13 González-Martínez D, Fernández-Sáez N, Cativiela C, Campos JM, Gotor-Fernández V. Catalysts 2018; 8: 470
- 14 Kimatrai M, Conejo-García A, Ramírez A, Andreolli E, Da Silveira-Gomes A, García MA, Aránega A, Marchal JA, Campos JM. ChemMedChem 2011; 6: 1854
- 15 Alonso F, Beletskaya IP, Yus M. Chem. Rev. 2004; 104: 3079
- 16 Müller TE, Beller M. Chem. Rev. 1998; 98: 675
- 17 McDonald FE. Chem. Eur. J. 1999; 5: 3103
- 18 Zhang Z, Liu C, Kinder RE, Han X, Qian H, Widenhoefer RA. J. Am. Chem. Soc. 2006; 128: 9066
- 19 Li X, Chianese AR, Vogel T, Crabtree RH. Org. Lett. 2005; 7: 5437
- 20 Belting V, Krause N. Org. Lett. 2006; 8: 4489
- 21 Liu B, De Brabander JK. Org. Lett. 2006; 8: 4907
- 22 Qian H, Han X, Widenhoefer RA. J. Am. Chem. Soc. 2004; 126: 9536
- 23 Pouy MJ, Delp SA, Uddin J, Ramdeen VM, Cochrane NA, Fortman GC, Gunnoe TB, Cundari TR, Sabat M, Myers WH. ACS Catal. 2012; 2: 2182
- 24 Singh S, Schober A, Gross GA. Tetrahedron Lett. 2014; 55: 358
- 25 Kalita EV, Kim DG, Eltsov OS, Shtukina TS, Mukhametgaleeva IV. Chem. Heterocycl. Compd. 2019; 55: 473
- 26a Shiri M, Rajai-Daryasarei SS. Targets in Heterocyclic Systems, Vol. 24. Attanasi OA, Gabliele B. Italian Chemical Society; Rome: 2020: 1-21
- 26b Yasaei Z, Mohammadpour Z, Shiri M, Tanbakouchian Z, Fazelzadeh S. Front. Chem. 2019; 7: 433
- 26c Salehi P, Shiri M. Adv. Synth. Catal. 2019; 361: 118
- 26d Tanbakouchian Z, Zolfigol MA, Notash B, Ranjbar M, Shiri M. Appl. Organomet. Chem. 2019; 33: e5024
- 26e Salehi P, Shiri M. Adv. Synth. Catal. 2019; 361: 118
- 26f Shiri M, Fathollahi-Lahroud M, Yasaei Z. Tetrahedron 2017; 73: 2501
- 26g Shiri M, Ranjbar M, Yasaei Z, Zamanian F, Notash B. Org. Biomol. Chem. 2017; 15: 10073
- 26h Shiri M, Pourabed R, Zadsirjan V, Sodagar E. Tetrahedron Lett. 2016; 57: 5435
- 26i Shiri M, Heydari M, Zadsirjan V. Tetrahedron 2017; 73: 2116
- 26j Faghihi Z, Oskooie HA, Heravi MM, Tajbakhsh M, Shiri M. Monatsh. Chem. 2017; 148: 315
- 26k Shiri M, Faghihi Z, Oskouei HA, Heravi MM, Fazelzadeh S, Notash B. RSC Adv. 2016; 6: 92235
- 26l Shiri M, Heravi MM, Hamidi H, Zolfigol MA, Tanbakouchian Z, Nejatinezhad-Arani A, Shintre SA, Koorbanally NA. J. Iran. Chem. Soc. 2016; 13: 2239
- 26m Shiri M, Salehi P, Mohammadpour Z, Salehi P, Notash B. Synthesis 2021; 53: 1149
- 27 Meth-Cohn O, Narine B, Tarnowski B. J. Chem. Soc., Perkin Trans. 1 1981; 1520
- 28 Onysko MY, Lendel VG. Chem. Heterocycl. Compd. 2009; 45: 853
- 29 Vandavasi JK, Hu W.-P, Senadi GC, Boominathan SS. K, Chen H.-Y, Wang J.-J. Eur. J. Org. Chem. 2014; 6219