Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2022; 54(09): 2251-2257
DOI: 10.1055/s-0040-1719881
DOI: 10.1055/s-0040-1719881
paper
Nickel-Catalyzed Reductive Cross-Coupling of Oxalates Derived from α-Hydroxy Carbonyls with Vinyl Bromides
This research was supported by the National Natural Science Foundation of China (No. 21871173).
Abstract
A nickel-catalyzed cross-electrophile coupling is disclosed in which a range of vinyl bromides were utilized as electrophiles with oxalates derived from α-hydroxy carbonyls as precursors to carbonyl radical coupling partners. This method is compatible with a broad range of functional groups, providing a complementary solution for the construction of β,γ-unsaturated carbonyl compounds.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1719881.
- Supporting Information
Publication History
Received: 30 October 2021
Accepted after revision: 09 December 2021
Article published online:
10 February 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
- 1b Crespi S, Fagnoni M. Chem. Rev. 2020; 120: 9790
- 3a Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
- 3b Zuo Z, Cong H, Li W, Choi J, Fu GC, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 1832
- 3c Cornella J, Edwards JT, Qin T, Kawamura S, Wang J, Pan CM, Gianatassio R, Schmidt M, Eastgate MD, Baran PS. J. Am. Chem. Soc. 2016; 138: 2174
- 3d Wang J, Qin T, Chen TG, Wimmer L, Edwards JT, Cornella J, Vokits B, Shaw SA, Baran PS. Angew. Chem. Int. Ed. 2016; 55: 9676
- 3e Huihui KM. M, Caputo JA, Melchor Z, Olivares AM, Spiewak AM, Johnson KA, DiBenedetto TA, Kim S, Ackerman LK. G, Weix DJ. J. Am. Chem. Soc. 2016; 138: 5016
- 3f Suzuki N, Hofstra JL, Poremba KE, Reisman SE. Org. Lett. 2017; 19: 2150
- 3g Zhao W, Wurz RP, Peters JC, Fu GC. J. Am. Chem. Soc. 2017; 139: 12153
- 3h Wang D, Zhu N, Chen P, Lin Z, Liu G. J. Am. Chem. Soc. 2017; 139: 15632
- 3i Mao R, Balon J, Hu X. Angew. Chem. Int. Ed. 2018; 57: 9501
- 4a Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
- 4b Primer DN, Karakaya I, Tellis JC, Molander GA. J. Am. Chem. Soc. 2015; 137: 2195
- 4c Jouffroy M, Primer DN, Molander GA. J. Am. Chem. Soc. 2016; 138: 475
- 5a Merchant RR, Edwards JT, Qin T, Kruszyk MM, Bi C, Che G, Bao DH, Qiao W, Sun L, Collins MR, Fadeyi OO, Gallego GM, Mousseau JJ, Nuhant P, Baran PS. Science 2018; 360: 75
- 5b Hughes JM. E, Fier PS. Org. Lett. 2019; 21: 5650
- 6a Zhang H.-W, Pu W.-Y, Xiong T, Li Y, Zhou X, Sun K, Liu Q, Zhang Q. Angew. Chem. Int. Ed. 2013; 52: 2529
- 6b He Y.-T, Li L.-H, Yang Y.-F, Zhou Z.-Z, Hua H.-L, Liu X.-Y, Liang Y.-M. Org. Lett. 2014; 16: 270
- 6c Wang F, Wang D, Mu X, Chen P, Liu G. J. Am. Chem. Soc. 2014; 136: 10202
- 6d Wang F, Wang D, Wan X, Wu L, Chen P, Liu G. J. Am. Chem. Soc. 2016; 138: 15547
- 6e Lin J.-S, Dong X.-Y, Li T.-T, Jiang N.-C, Tan B, Liu X.-Y. J. Am. Chem. Soc. 2016; 138: 9357
- 6f Wang D, Wang F, Chen P, Lin Z, Liu G. Angew. Chem. Int. Ed. 2017; 56: 2054
- 6g Guo Q, Wang M, Wang Y, Xu Z, Wang R. Chem. Commun. 2017; 53: 12317
- 6h Wang F.-L, Dong X.-Y, Lin J.-S, Zeng Y, Jiao G.-Y, Gu Q.-S, Guo X.-Q, Ma C.-L, Liu X.-Y. Chem 2017; 3: 979
- 6i Wu L, Wang F, Wan X, Wang D, Chen P, Liu G. J. Am. Chem. Soc. 2017; 139: 2904
- 6j Wang D, Wu L, Wang F, Wan X, Chen P, Lin Z, Liu G. J. Am. Chem. Soc. 2017; 139: 6811
- 6k Sha W, Deng L, Ni S, Mei H, Han J, Pan Y. ACS Catal. 2018; 8: 7489
- 7a Basch CH, Liao J, Xu J, Piane JJ, Watson MP. J. Am. Chem. Soc. 2017; 139: 5313
- 7b Liao J, Guan W, Boscoe BP, Tucker JW, Tomlin JW, Garnsey MR, Watson MP. Org. Lett. 2018; 20: 3030
- 7c Guan W, Liao J, Watson MP. Synthesis 2018; 50: 3231
- 7d Plunkett S, Basch CH, Santana SO, Watson MP. J. Am. Chem. Soc. 2019; 141: 2257
- 7e Ni S, Li C.-X, Mao Y, Han J, Wang Y, Yan H, Pan Y. Sci. Adv. 2019; 5: 9516
- 7f Yue H, Zhu C, Shen L, Geng Q, Hock KJ, Yuan T, Cavallo L, Rueping M. Chem. Sci. 2019; 10: 4430
- 7g Liao J, Basch CH, Hoerrner ME, Talley MR, Boscoe BP, Tucker JW, Garnsey MR, Watson MP. Org. Lett. 2019; 21: 2941
- 7h Martin-Montero R, Yatham VR, Yin H, Davies J, Martin R. Org. Lett. 2019; 21: 2947
- 7i Hoerrner ME, Baker KM, Basch CH, Bampo EM, Watson MP. Org. Lett. 2019; 21: 7356
- 7j Li C.-L, Jiang X, Lu L.-Q, Xiao W.-J, Wu X.-F. Org. Lett. 2019; 21: 6919
- 7k Wang J, Hoerrner ME, Watson MP, Weix DJ. Angew. Chem. Int. Ed. 2020; 59: 13484
- 7l Pulikottil FT, Pilli R, Suku RV, Rasappan R. Org. Lett. 2020; 22: 2902
- 7m Zhang X, Qi D, Jiao C, Liu X, Zhang G. Nat. Commun. 2021; 12: 4904
- 7n Yang T, Wei Y, Koh MJ. ACS Catal. 2021; 11: 6519
- 8a Nakajima K, Nojima S, Nishibayashi Y. Angew. Chem. Int. Ed. 2016; 55: 14106
- 8b Bonet AG, Tellis JC, Matsui JK, Vara BA, Molander GA. ACS Catal. 2016; 6: 8004
- 8c Buzzetti L, Prieto A, Roy SR, Melchiorre P. Angew. Chem. Int. Ed. 2017; 56: 15039
- 8d Zhang H.-H, Zhao J.-J, Yu S. J. Am. Chem. Soc. 2018; 140: 16914
- 8e Nakajima K, Guo X, Nishibayashi Y. Chem. Asian J. 2018; 13: 3653
- 8f Zhang D, Tang Z.-L, Ouyang X.-H, Song R.-J, Li J.-H. Chem. Commun. 2020; 56: 14055
- 8g Zhang Y, Tanabe Y, Kuriyama S, Nishibayashi Y. J. Org. Chem. 2021; 86: 12577
- 9a Zhang X, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 13862
- 9b Yan X.-B, Li C.-L, Jin W.-J, Guo P, Shu X.-Z. Chem. Sci. 2018; 9: 4529
- 9c Ye Y, Chen H, Sessler J, Gong H. J. Am. Chem. Soc. 2019; 141: 820
- 10 Ye Y, Chen H, Yao K, Gong H. Org. Lett. 2020; 22: 2070
- 11 Chen H, Ye Y, Tong W, Fang J, Gong H. Chem. Commun. 2020; 56: 454
- 12 Gao M, Sun D, Gong H. Org. Lett. 2019; 21: 1645
- 13 Tao X, Yao K, Xue W. Tetrahedron Lett. 2021; 73: 153129
- 14a Irschik H, Washausen P, Sasse F, Fohrer J, Huch V, Müller R, Prusov EV. Angew. Chem. Int. Ed. 2013; 52: 5402
- 14b Tsuji N, Kobayashi M, Nagashima K, Wakisaka Y, Koizumi K. J. Antibiot. 1976; 29: 1
- 14c Ankner T, Cosner CC, Helquist P. Chem. Eur. J. 2013; 19: 1858
- 14d Edwankar RV, Edwankar CR, Cook JM. J. Org. Chem. 2014; 79: 10030
- 14e Smith JM, Moreno J, Boal BW, Garg NK. J. Am. Chem. Soc. 2014; 136: 4504
- 15 A preliminary study showed that the oxalate derivative of an α-hydroxy amide was also a viable substrate. For details of this reaction, see the Supporting Information.