Subscribe to RSS
DOI: 10.1055/s-0040-1719886
Application of Proline-Derived (Thio)squaramide Organocatalysts in Asymmetric Diels–Alder and Conjugate Addition Reactions
This research was funded by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (J.K.). It was also supported by the National Research, Development and Innovation Office (grant numbers FK138037 and K128473), and the Richter Gedeon Excellence PhD Scholarship of Richter Gedeon Talentum Foundation, Richter Gedeon Plc. (G.D.).
Dedicated to the memory of Prof. Ferenc Fülöp
Abstract
The synthesis of chiral proline-derived squaramide and thiosquaramide organocatalysts, which are capable of the dual activation in asymmetric reactions is reported. The (thio)squaramide moiety can form hydrogen bonds to activate the substrates and to stereocontrol the reaction, while the pyrrolidine unit can form enamines to activate carbonyl compounds via aminocatalysis. Comparing the performance of thiosquaramide to squaramide, the Diels–Alder reaction of (anthracen-9-yl)acetaldehyde and trans-β-nitrostyrene was examined, which has been investigated in the literature using quantum chemical calculations. Both squaramide and thiosquaramide gave excellent yields (up to 99%) and enantiomeric excess values (up to 98%). Moreover, their catalytic performance was compared in conjugate addition of lawsone to β,γ-unsaturated α-keto ester.
Key words
asymmetric organocatalysis - aminocatalysis - proline - thiosquaramide - Diels–Alder reaction - conjugate additionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1719886.
- Supporting Information
Publication History
Received: 14 October 2021
Accepted after revision: 17 December 2021
Article published online:
09 February 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Castelvecchi D, Stoye E. Nature 2021; 598: 247
- 2 Ahrendt KA, Borths CJ, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243
- 3 List B, Lerner RA, Barbas CF. J. Am. Chem. Soc. 2000; 122: 2395
- 4 Franzén J, Marigo M, Fielenbach D, Wabnitz TC, Kjærsgaard A, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 18296
- 5 Corey EJ, Bakshi RK, Shibata S. J. Am. Chem. Soc. 2002; 109: 5551
- 6 Movassaghi M, Jacobsen EN. Science 2002; 298: 1904
- 7 List B. Synlett 2001; 1675
- 8 Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
- 9 Liu J, Wang L. Synthesis 2016; 49: 960
- 10 Panday SK. Tetrahedron: Asymmetry 2011; 22: 1817
- 11 Barbas CF. Angew. Chem. Int. Ed. 2008; 47: 42
- 12 Ötvös SB, Mándity IM, Fülöp F. ChemSusChem 2012; 5: 266
- 13 Szőllősi G, Gombkötő D, Mogyorós AZ, Fülöp F. Adv. Synth. Catal. 2018; 360: 1992
- 14 Mahato CK, Mukherjee S, Kundu M, Vallapure VP, Pramanik A. J. Org. Chem. 2021; 86: 5213
- 15 Notz W, Tanaka F, Barbas CF. Acc. Chem. Res. 2004; 37: 580
- 16 Pihko PM, Majander I, Erkkilä A. Top. Curr. Chem. 2009; 291: 145
- 17 Schreiner PR. Chem. Soc. Rev. 2003; 32: 289
- 18 Yu X, Wang W. Chem. Asian J. 2008; 3: 516
- 19 Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
- 20 Malerich JP, Hagihara K, Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416
- 21 Storer RI, Aciro C, Jones LH. Chem. Soc. Rev. 2011; 40: 2330
- 22 Busschaert N, Elmes RB. P, Czech DD, Wu X, Kirby IL, Peck EM, Hendzel KD, Shaw SK, Chan B, Smith BD, Jolliffe KA, Gale PA. Chem. Sci. 2014; 5: 3617
- 23 Rombola M, Sumaria CS, Montgomery TD, Rawal VH. J. Am. Chem. Soc. 2017; 139: 5297
- 24 Nagy S, Kisszékelyi P, Kupai J. Period. Polytech. Chem. Eng. 2018; 62: 467
- 25 Portell A, Barbas R, Braga D, Polito M, Puigjaner C, Prohens R. CrystEngComm 2009; 11: 52
- 26 Prohens R, Portell A, Alcobé X. Cryst. Growth Des. 2012; 12: 4548
- 27 Prohens R, Portell A, Font-Bardia M, Bauzá A, Frontera A. Cryst. Growth Des. 2014; 14: 2578
- 28 Rafel P, Anna P, Mercè F.-B, Antonio B, Antonio F. CrystEngComm 2016; 18: 6437
- 29 Talens VS, Davis J, Wu C.-H, Wen Z, Lauria F, Gupta KB. S. S, Rudge R, Boraghi M, Hagemeijer A, Trinh TT, Englebienne P, Voets IK, Wu JI, Kieltyka RE. J. Am. Chem. Soc. 2020; 142: 19907
- 30 Lu T, Wheeler SE. Chem. Eur. J. 2013; 19: 15141
- 31 Jiang H, Rodríguez-Escrich C, Johansen TK, Davis RL, Jørgensen KA. Angew. Chem. Int. Ed. 2012; 51: 10271
- 32 Maître L, Staehelin M, Bein HJ. Biochem. Pharmacol. 1970; 19: 2875
- 33 Wells BG, Gelenberg AJ. Pharmacother: J. Hum. Pharmacol. Drug Ther. 1981; 1: 121
- 34 McNamara YM, Bright SA, Byrne AJ, Cloonan SM, McCabe T, Williams DC, Meegan MJ. Eur. J. Med. Chem. 2014; 71: 333
- 35 Rombola M, Rawal VH. Org. Lett. 2018; 20: 514
- 36 Nagy S, Dargó G, Kisszékelyi P, Fehér Z, Simon A, Barabás J, Höltzl T, Mátravölgyi B, Kárpáti L, Drahos L, Huszthy P, Kupai J. New J. Chem. 2019; 43: 5948
- 37 Vega-Peñaloza A, Sánchez-Antonio O, Escudero-Casao M, Tasnádi G, Fülöp F, Juaristi E. Synthesis 2013; 45: 2458
- 38 Rao KS, Trivedi R, Kantam ML. Synlett 2015; 26: 221
- 39 Ormandyová K, Bilka S, Mečiarová M, Šebesta R. ChemistrySelect 2019; 4: 8870
- 40 More JD, Finney NS. Org. Lett. 2002; 4: 3001
- 41 Gao Y, Ren Q, Ang S.-M, Wang J. Org. Biomol. Chem. 2011; 9: 3691