Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2022; 54(09): 2148-2156
DOI: 10.1055/s-0040-1719892
DOI: 10.1055/s-0040-1719892
feature
Brønsted Acid Catalyzed Direct Annulation of Alkoxyallenes and Naphthols to Chroman Ketals
Financial support from the National Natural Science Foundation of China (21602231, 21772227) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20191197) is gratefully acknowledged.

Abstract
A straightforward Brønsted acid-catalyzed and scalable annulation of alkoxyallenes with simple naphthols was developed, affording chroman ketals in 49–84% yields. The versatile chroman ketals can be easily converted into coumarins by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)-mediated oxidation, and a series of 2-substituted chromans via nucleophilic substitutions.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1719892.
- Supporting Information
Publication History
Received: 01 December 2021
Accepted after revision: 20 December 2021
Article published online:
14 February 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Ahn S, Hong M, Sundararajan M, Ess DH, Baik MH. Chem. Rev. 2019; 119: 6509
- 1b Dauth A, Love JA. Chem. Rev. 2011; 111: 2010
- 1c Transition Metals in Organic Synthesis: A Practical Approach. Gibson SE. Oxford University Press; Oxford: 1997
- 2a Blieck R, Taillefer M, Monnier F. Chem. Rev. 2020; 120: 13545
- 2b Zimmer R, Reissig H.-U. Chem. Soc. Rev. 2014; 43: 2888
- 2c Bras JL, Muzart J. Chem. Soc. Rev. 2014; 43: 3003
- 2d Muñoz MP. Chem. Soc. Rev. 2014; 43: 3164
- 2e Brasholz M, Reissig H.-U, Zimmer R. Acc. Chem. Res. 2009; 42: 45
- 2f Ma S. Chem. Rev. 2005; 105: 2829
- 3a Yang Z, Wang Z. Angew. Chem. Int. Ed. 2021; 60: 27288
- 3b Jang D.-J, Lee S, Lee J, Moon D, Rhee YH. Angew. Chem. Int. Ed. 2021; 60: 22166
- 3c Zheng J, Nikbakht A, Breit B. ACS Catal. 2021; 11: 3343
- 3d Jiang L, Jia T, Wang M, Liao J, Cao P. Org. Lett. 2015; 17: 1070
- 3e Lim W, Kim J, Rhee YH. J. Am. Chem. Soc. 2014; 136: 13618
- 3f Kim H, Lim W, Im D, Kim DG, Rhee YH. Angew. Chem. Int. Ed. 2012; 51: 12055
- 3g Kim H, Rhee YH. J. Am. Chem. Soc. 2012; 134: 4011
- 3h Trost BM, Xie J, Sieber JD. J. Am. Chem. Soc. 2011; 133: 20611
- 3i Trost BM, Jäkel C, Plietker B. J. Am. Chem. Soc. 2003; 125: 4438
- 3j Trost BM, Simas AB. C, Plietker B, Jäkel C, Xie J. Chem. Eur. J. 2005; 11: 7075
- 3k Trost BM, Xie J. J. Am. Chem. Soc. 2006; 128: 6044
- 3l Trost BM, Xie J. J. Am. Chem. Soc. 2008; 130: 6231
- 4 Zhou H, Wei Z, Zhang J, Yang H, Xia C, Jiang G. Angew. Chem. Int. Ed. 2017; 56: 1077
- 5a Harvey RG, Cortez C, Ananthanarayan TP, Sanford S. J. Org. Chem. 1988; 53: 3936
- 5b Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W. Chem. Rev. 2019; 119: 10403
- 5c Santos-Figueroa LE, Moragues ME, Climent E, Agostini A, Martínez-Máñez R, Sancenón F. Chem. Soc. Rev. 2013; 42: 3489
- 6 Pratap R, Ram VJ. Chem. Rev. 2014; 114: 10476
For reviews, see: