Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2022; 54(18): 3977-3988
DOI: 10.1055/s-0040-1719919
DOI: 10.1055/s-0040-1719919
feature
Metal-Free Thiolation and Hydroxylation of CF3-Substituted Alkenes: A Practical Method to Synthesize Trifluoromethyl Tertiary Alcohols
Financial support was provided by National Natural Science Foundation of China (No. 21801181).
Abstract
A novel and practical method to synthesize trifluoromethyl tertiary alcohols has been developed. Under mild reaction conditions, the present reaction could be compatible with a wide range of functional groups. Moreover, the performance of gram-scale reaction and further transformations illustrated the good potential utility of the present chemistry. Furthermore, the radical process of this reaction has been proved by mechanistic studies.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1719919.
- Supporting Information
Publication History
Received: 17 February 2022
Accepted after revision: 16 March 2022
Article published online:
28 April 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 1b Smart BE. J. Fluorine Chem. 2001; 109: 3
- 1c Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 2a Reinhard EJ, Wang JL, Durley RC, Fobian YM, Grapperhaus ML, Hickory BS, Massa MA, Norton MB, Promo MA, Tollefson MB, Vernier WF, Connolly DT, Witherbee BJ, Melton MA, Regina KJ, Smith ME, Sikorski JA. J. Med. Chem. 2003; 46: 2152
- 2b Kirk KL. J. Fluorine Chem. 2006; 127: 1013
- 3 Cleve A, Klar U, Schwede W. J. Fluorine Chem. 2005; 126: 217
- 4 Begue JP, Bonnet-Delpon D. J. Fluorine Chem. 2006; 127: 992
- 5a Batageri R, Zhang Y, Zindell RM, Kuzmich DK, Kirrane TM, Bentzien J, Cardozo M, Capolino AJ, Fadara TN, Nelson RM, Paw Z, Shih DT, Shih CK, Jelaska LZ, Nabozny G, Thomson DS. Biorg. Med. Chem. Lett. 2005; 15: 4761
- 5b Isanbor C, O’Hagan D. J. Fluorine Chem. 2006; 127: 303
- 6a Ruppert I, Schlich K, Volbach W. Tetrahedron Lett. 1984; 25: 2195
- 6b Prakash GK. S, Krishnamurti R, Olah GA. J. Am. Chem. Soc. 1989; 111: 393
- 6c Cook AM, Wolf C. Angew. Chem. Int. Ed. 2016; 55: 2929
- 6d Joubert J, Roussel S, Christophe C, Billard T, Langlois BR, Vidal T. Angew. Chem. Int. Ed. 2003; 42: 3133
- 6e Sanhueza IA, Bonney KJ, Nielsen MC, Schoenebeck F. J. Org. Chem. 2013; 78: 7749
- 7a Song J.-J, Tan Z, Reeves JT, Gallou F, Yee NK, Senanayake CH. Org. Lett. 2005; 7: 2193
- 7b Mizuta S, Shibata N, Ogawa S, Fujimoto H, Nakamura S, Toru T. Chem. Commun. 2006; 2575
- 7c Wu S, Zeng W, Wang Q, Chen F.-X. Org. Biomol. Chem. 2012; 10: 9334
- 8a Gassman PG, Ray JA, Wenthold PG, Mickelson JW. J. Org. Chem. 1991; 56: 5143
- 8b Singh RP, Cao G, Kirchmeier RL, Shreeve JM. J. Org. Chem. 1999; 64: 2873
- 8c Motherwell WB, Storey LJ. J. Fluorine Chem. 2005; 126: 489
- 8d Singh RP, Kirchmeier RL, Shreeve JM. Org. Lett. 1999; 1: 1047
- 8e DiLauro AM, Seo W, Phillips ST. J. Org. Chem. 2011; 76: 7352
- 9a Yan G.-B, Qiu K.-Y, Guo M. Org. Chem. Front. 2021; 8: 3915
-
9b
Zhang J.-J,
Yang J.-D,
Cheng J.-P.
Nat. Commun. 2021; 12: 2835
- 9c Gu Y.-T, Norton J R, Salahi F, Lisnyak VG, Zhou Z.-Y, Snyder SA. J. Am. Chem. Soc. 2021; 143: 9657
- 9d Yao C.-B, Wang S, Norton J, Hammond M. J. Am. Chem. Soc. 2020; 142: 4793
- 9e Zeng H, Zhu C.-L, Liu C, Cai Y.-Y, Chen F.-L, Jiang H.-F. Chem. Commun. 2020; 56: 6241
- 9f Poutrel P, Pannecoucke X, Jubault P, Poisson T. Org. Lett. 2020; 22: 4858
- 9g Gao X.-T, Zhang Z, Wang X, Tian J.-S, Xie S.-L, Zhou F, Zhou J. Chem. Sci. 2020; 11: 10414
- 9h Zeng H, Zhu C.-L, Liu C, Cai Y.-Y, Chen F.-L, Jiang H.-F. Chem. Commun. 2020; 56: 6241
- 9i Gao X.-T, Zhang Z, Wang X, Tian J.-S, Xie F.-Z, Zhou J. Chem. Sci. 2020; 11: 10414
- 9j Andrella NO, Xu N, Gabidullin BM, Ehm C, Baker RT. J. Am. Chem. Soc. 2019; 141: 11506
- 9k Gao P, Yuan C.-K, Zhao Y, Shi Z.-Z. Chem 2018; 4: 2201
- 10a Xia P.-J, Liu F, Li S.-H, Xiao J.-A. Org. Chem. Front. 2022; 9: 709
- 10b Chen Y.-X, Wang Z.-J, Xiao J.-A, Chen K, Xiang HY, Yang H. Org. Lett. 2021; 23: 6558
- 10c Ye Z.-P, Gao J, Duan X.-Y, Guan J.-P, Liu F, Chen K, Xiao J.-A, Xiang H.-Y, Yang H. Chem. Commun. 2021; 57: 8969
- 11a Liu S, Zhao F, Chen X, Geng G.-J, Huang H. Adv. Synth. Catal. 2020; 362: 3795
- 11b Liang Y, Wei J, Qiu X, Jiao N. Chem. Rev. 2018; 118: 4912
- 11c Liang Y.-F, Jiao N. Acc. Chem. Res. 2017; 50: 1640
- 11d McCann SD, Stahl SS. Acc. Chem. Res. 2015; 48: 1756
-
11e
Campbell AN,
Stahl SS.
Acc. Chem. Res. 2012; 45: 851
-
11f
Shi Z,
Zhang C,
Tang C,
Jiao N.
Chem. Soc. Rev. 2012; 41: 3381
- 11g Wu W, Jiang H. Acc. Chem. Res. 2012; 45: 1736
- 12a Wang H, Lu Q, Qian C, Liu C, Liu W, Chen K, Lei A. Angew. Chem. Int. Ed. 2016; 55: 1094
- 12b Lu Q, Chen J, Liu C, Huang Z, Peng P, Wang H, Lei A. RSC Adv. 2015; 5: 24494
- 12c Lu Q, Wang H, Peng P, Liu C, Huang Z, Luo Y, Lei A. Org. Chem. Front. 2015; 2: 908
- 12d Lu Q, Zhang J, Wei F, Qi Y, Wang H, Liu Z, Lei A. Angew. Chem. Int. Ed. 2013; 52: 7156