Synthesis 2022; 54(17): 3809-3816
DOI: 10.1055/s-0040-1720028
special topic
Special Issue in memory of Prof. Ferenc Fülöp

Synthesis of Alicyclic 2-Methylenethiazolo[2,3-b]quinazolinone Derivatives via Base-Promoted Cascade Reactions

Mohamed El Haimer
a   Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellence Centre, Eötvös utca 6, Szeged 6720, Hungary
,
Tünde Faragó
a   Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellence Centre, Eötvös utca 6, Szeged 6720, Hungary
,
Zsuzsanna Schelz
b   Pharmacodynamics and Biopharmacy, University of Szeged, Interdisciplinary Excellence Centre, Eötvös utca 6, Szeged 6720, Hungary
,
István Zupkó
b   Pharmacodynamics and Biopharmacy, University of Szeged, Interdisciplinary Excellence Centre, Eötvös utca 6, Szeged 6720, Hungary
,
Márta Palkó
a   Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellence Centre, Eötvös utca 6, Szeged 6720, Hungary
› Author Affiliations
We are grateful to the Hungarian Scientific Research Fund (OTKA No. K 138871). Financial support from the University of Szeged (GINOP-2.3.2-15-2016-00038 project) and Ministry of Human Capacities, Hungary (20391-3/2018/FEKUSTRAT) is acknowledged.


Dedicated to the memory of Professor Ferenc Fülöp.

Abstract

The synthesis of alicyclic 2-methylenethiazolo[2,3-b]quinazo­l­inones is performed via base-promoted cascade reactions, starting from either alicyclic β-amino propargylamides using carbon disulfide, or from alicyclic ethyl 2-isothiocyanatocarboxylates by addition of propargylamine. In both cases the cascade reaction proceeds by way of a favoured 5-exo-dig process during the second ring closure, as confirmed by full NMR spectroscopic assignments. Moreover, a high-yielding retro­-Diels–Alder (RDA) reaction is performed on the norbornene derivatives leading to 2-methylene-2H-thiazolo[3,2-a]pyrimidin-5(3H)-ones. The obtained compounds exert modest antiproliferative activities against a panel of human gynaecological cancer cell lines.

Supporting Information



Publication History

Received: 15 October 2021

Accepted after revision: 29 October 2021

Article published online:
07 December 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Li H, Huang R, Qiu D, Yang Z, Liu X, Ma J, Ma Z. Prog. Nat. Sci. 1998; 8: 359
  • 2 Alagarsamy V, Solomon VR, Dhanabal K. Bioorg. Med. Chem. 2017; 15: 235
  • 3 Baba A, Kawamura N, Makino H, Ohta Y, Taketomi S, Sohda T. J. Med. Chem. 1996; 39: 5176
  • 4 Lakhan R, Singh OP, Singh JR. L. J. Indian Chem. Soc. 1987; 64: 316
  • 5 Chen X, Du Y, Sun H, Wang F, Kong L, Sun M. Bioorg. Med. Chem. Lett. 2014; 24: 884
  • 6 Jeminejs A, Goliškina SM, Novosjolova I, Stepanovs D, Bizdēna Ē, Turks M. Synthesis 2021; 53: 1443
  • 7 Buha VM, Rana DN, Chhabria MT, Chikhalia KH, Mahajan BM, Brahmkshatriya PS, Shah NK. Med. Chem. Res. 2013; 22: 4096
  • 8 Wan Z, Hu D, Li P, Xie D, Gan X. Molecules 2015; 20: 11861
  • 9 Al-Omary FA. M, Hassan GS, El-Messery SM, Nagi MN, Habib ES. E, El-Subbagh HI. Eur. J. Med. Chem. 2013; 63: 33
  • 10 Antypenko OM, Kovalenko SI, Karpenko OV, Nikitin VO, Antypenko LM. Helv. Chim. Acta 2016; 99: 621
  • 11 Li W, Wang XY, Zheng R, Yan H, Cao Z, Zhong L, Wang ZR, Ji P, Yang LL, Wang LJ, Xu Y, Liu JJ, Yang J, Zhang CH, Ma S, Feng S, Sun QZ, Wei YQ, Yang SY. J. Med. Chem. 2012; 55: 3852
  • 12 Liu G, Liu CP, Ji CN, Sun L, Wen Q, Chin W. J. Org. Chem. 2008; 28: 525
  • 13 Liu F, Huang Y. Pestic. Biochem. Physiol. 2011; 101: 248
    • 14a Kühler TC, Fryklund J, Bergman NK, Weilitz J, Lee A, Larsson H. J. Med. Chem. 1995; 38: 4906
    • 14b Llauger L, He HZ, Kim J, Aguirre J, Rosen Z, Peters U, Davies P, Chiosis G. J. Med. Chem. 2005; 48: 2892
    • 14c Mavrova AT, Vuchev D, Anichina K, Vassilev N. Eur. J. Med. Chem. 2010; 45: 5856
    • 15a Thari FZ, Tachallait H, El Alaoui NE, Talha A, Arshad S, Álvarez E, Karrouchi K, Bougrin K. Ultrason. Sonochem. 2020; 68: 105222
    • 15b Li W, Lu Y, Wang Z, Dalton JT, Miller DD. Bioorg. Med. Chem. Lett. 2017; 17: 4113
    • 15c Dheur J, Ollivier N, Melnyk O. Org. Lett. 2011; 13: 1560
    • 15d Mann G, Satish G, Meledin R, Vamisetti GB, Brik A. Angew. Chem. Int. Ed. 2019; 58: 13540
  • 16 Orysyk VV, Zborovskii YL, Staninets VI, Dobosh AA, Khripak SM. Chem. Heterocycl. Compd. 2003; 39: 640
    • 17a Ghorab MM, Abdel-Gawad SM, El-Gaby MS. Farmaco 2000; 55: 249
    • 17b Janardhan B, Manjulatha K, Srinivas B, Rajitha B, Muralikrishna N, Sadanandam A. RSC Adv. 2014; 4: 22866
    • 18a Pellón RF, Docampo ML, Fascio ML. Synth. Commun. 2007; 37: 1853
    • 18b Bleda JA, Fresneda PM, Orenes R, Molina P. Eur. J. Org. Chem. 2009; 15: 2490
    • 18c Wang P, Tang S, Lei A. Green Chem. 2017; 19: 2092
    • 18d Zhou H, Chen W, Chen Z. Org. Lett. 2018; 20: 2590
    • 18e Tan J, Wang Z, Yuan J, Peng Y, Chen Z. Adv. Synth. Catal. 2019; 361: 1295
  • 19 Mahdavi M, Bialam M, Saeedi M, Jafarpour F, Foroumadi A, Shafiee A. Synlett 2015; 26: 173
  • 20 Miao J, Sang X, Wang Y, Deng S, Hao W. Org. Biomol. Chem. 2019; 17: 6994
  • 21 Palkó M, El Haimer M, Kormányos Z, Fülöp F. Molecules 2019; 24: 772
  • 22 El Haimer M, Palkó M, Haukka M, Gajdács M, Zupkó I, Fülöp F. RSC Adv. 2021; 11: 6952
  • 23 Urleb U, Neidlein R, Kramer W. Helv. Chim. Acta 1993; 76: 431
  • 24 Stajer G, Szabo AE, Sohar P. Heterocycles 1999; 1849
  • 25 Palkó M, Evanics F, Bernáth G, Fülöp F. J. Heterocycl. Chem. 2000; 37: 779
  • 26 Szakonyi Z, Fülöp F, Bernáth G, Sohár P. Heterocycles 1996; 2: 625
  • 27 Mosmann T. J. Immunol. Methods 1983; 65: 55