CC BY-NC-ND 4.0 · SynOpen 2022; 06(03): 211-218
DOI: 10.1055/s-0040-1720041
paper

Palladium-Catalysed Reductive Aminocarbonylation of Aryl Bromides and Iodides with Nitroarenes

Blessing D. Mkhonazi
,
Euphrent M. Mabila
,
Funding was provided by the South African Agency for Science and Technology Advancement (118082).


Abstract

Amide functional groups are a structural feature in a vast array of beneficial organic molecules. This has resulted in a surge in new methodologies developed to enable access to this functional group using a broad range of coupling partners. Herein, we report a palladium-catalysed reductive aminocarbonylation of aryl bromides and iodides with nitroarenes to afford the respective amide products. The developed protocol employs Mo(CO)6 as a carbonyl source and a combination of Zn and TMSCl as co-reducing agents. For most substrates, the anticipated amide products were obtained in modest to high amide product yields.

Supporting Information



Publication History

Received: 17 August 2022

Accepted: 19 August 2022

Article published online:
22 September 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Mgbeahuruike EE, Yrjönen T, Vuorela H, Holm Y. S. Afr. J. Bot. 2017; 112: 54
  • 2 Dong WL, Xu JY, Xiong LX, Li ZM. Molecules 2012; 17: 10414
  • 3 Santos Oliveira AJ. d. M, de Castro RD, Pessôa H. dL. F, Wadood A, de Sousa DP. BioMed Res. Int. 2019; 9209676
  • 4 Ghose AK, Viswanadhan VN, Wendoloski JJ. J. Comb. Chem. 1999; 1: 55
  • 5 Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006; 4: 2337
  • 6 Bonnet U. CNS Drug Rev. 2003; 9: 97
  • 7 Blough ER, Wu M. Front. Pharmacol. 2011; 2: 1
  • 8 Mehta SK, Jindal N. AAPS PharmSciTech 2015; 16: 67
  • 9 Black HR, Bailey J, Zappe D, Samuel R. Drugs 2009; 69: 2393
  • 10 Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JL, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY. Green Chem. 2007; 9: 411
  • 11 Bryan MC, Dunn PJ, Entwistle D, Gallou F, Koenig SG, Hayler JD, Hickey MR, Hughes S, Kopach ME, Moine G, Richardson P, Roschangar F, Steven A, Weiberth FJ. Green Chem. 2018; 20: 5082
  • 12 Montalbetti CA. G. N, Falque V. Tetrahedron 2005; 61: 10827
  • 13 Ghosh AK, Shahabi D. Tetrahedron Lett. 2021; 63: 152719
  • 14 McKnelly KJ, Sokol W, Nowick JS. J. Org. Chem. 2020; 85: 1764
  • 15 Wu JW, Wu YD, Dai JJ, Xu HJ. Adv. Synth. Catal. 2014; 356: 2429
  • 16 Nguyen TB, Sorres J, Tran MQ, Ermolenko L, Al-Mourabit A. Org. Lett. 2012; 14: 3202
  • 17 Bantreil X, Kanfar N, Gehin N, Golliard E, Ohlmann P, Martinez J, Lamaty F. Tetrahedron 2014; 70: 5093
  • 18 Wilson CR, Gessner RK, Moosa A, Seldon R, Warner DF, Mizrahi V, Soares de Melo C, Simelane SB, Nchinda A, Abay E, Taylor D, Njoroge M, Brunschwig C, Lawrence N, Boshoff HI. M, Barry CE. III, Sirgel FA, van Helden P, Harris CJ, Gordon R, Ghidelli-Disse S, Pflaumer H, Boesche M, Drewes G, Sanz O, Santos G, Rebollo-Lopez MJ, Urones B, Selenski C, Lafuente-Monasterio MJ, Axtman M, Lelièvre J, Ballell L, Mueller K, Street LJ, Ghorpade SR, Chibale K. J. Med. Chem. 2017; 60: 10118
  • 19 Barak DS, Batra S. Chem. Rec. 2021; 21: 4059
    • 20a Moshapo PT, Simelane SB. ARKIVOC 2020; 190
  • 21 Owsley DC, Bloomberg JJ. Synthesis 1977; 118
  • 22 Cheung CW, Ploeger ML, Hu X. Nat. Commun. 2017; 8: 1
  • 23 Jain SK, Aravinda Kumar KA, Bharate SB, Vishwakarma RA. Org. Biomol. Chem. 2014; 12: 6465
  • 24 Xiao F, Liu Y, Tang C, Deng GJ. Org. Lett. 2012; 14: 984
  • 25 Ling L, Chen C, Luo M, Zeng X. Org. Lett. 2019; 21: 1912
  • 26 Zhao S, Mankad NP. Org. Lett. 2019; 21: 10106
  • 27 Peng JB, Li D, Geng HQ, Wu XF. Org. Lett. 2019; 21: 4878
  • 28 Shen N, Cheung CW, Ma J.-A. Chem. Commun. 2019; 55: 13709
  • 29 Cheung CW, Leendert Ploeger M, Hu X. Chem. Sci. 2018; 9: 655
  • 30 Cooper AK, Burton PM, Nelson DJ. Synthesis 2020; 52: 565
  • 31 Hosmane RS, Liebman JF. Struct. Chem. 2009; 20: 693
  • 32 Lõkov M, Tshepelevitsh S, Heering A, Plieger PG, Vianello R, Leito I. Eur. J. Org. Chem. 2017; 4475
  • 33 Khodja W, Leclair A, Rull-Barrull J, Zammattio F, Kutonova KV, Trusova ME, Felpin F, Rodriguez-Zubiri M. New J. Chem. 2016; 40: 8855
  • 34 Barnard CF. J. Organometallics 2008; 27: 5402
  • 35 Garrou PE, Heck RF. J. Am. Chem. Soc. 1976; 98: 4115
  • 36 Peng JB, Geng HQ, Li D, Qi X, Ying J, Wu X. Org. Lett. 2018; 20: 4988
  • 37 Wang Y, Zhu D, Tang L, Wang S, Wang Z. Angew. Chemie 2011; 123: 9079
  • 38 Wang W, Cong Y, Zhang L, Huang Y, Wang X, Zhang T. Tetrahedron Lett. 2014; 55: 124
  • 39 Ling L, Chen C, Luo M, Zeng X. Org. Lett. 2019; 21: 1912
  • 40 Sakai N, Takeoka M, Kumaki T, Asano H, Konakahara T, Ogiwara Y. Tetrahedron Lett. 2015; 56: 6448
  • 41 Cheung CW, Shen N, Wang S, Ullah A, Hu X, Ma J. Org. Chem. Front. 2019; 6: 756