Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2023; 55(24): 4096-4102
DOI: 10.1055/s-0040-1720093
DOI: 10.1055/s-0040-1720093
paper
Photoinduced Synthesis of 2-Trifluoromethylated Indoles through Oxidative Trifluoromethylation Using Langlois’ Reagent in the Absence of External Photocatalyst
The authors would like to acknowledge the Department of Biotechnology (DBT), India. Grant Number: 102/IFD/SAN/3016/2019-20.
Abstract
A photoinduced approach for regioselective C-2 trifluoromethylation of indoles was achieved with CF3SO2Na under UV light irradiation (360–365 nm) at ambient conditions without any external photo activator. The key steps involve the in situ conversion of CF3SO2Na reagent to CF3 • radical under oxygen or air and UV irradiation. This proficient method has the advantages of mild reaction conditions, fair substrate tolerability, and gram scalability.
Key words
indole - Langlois reagent - trifluoromethylation - UV light irradiation - single electron transferSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1720093.
- Supporting Information
Publication History
Received: 16 June 2023
Accepted after revision: 05 September 2023
Article published online:
05 October 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 2 Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
- 3 Bock L, Schultheiß SK, Maschauer S, Lasch R, Gradl S, Prante O, Zard SZ, Heinrich MR. Eur. J. Org. Chem. 2021; 6258
- 4 Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
- 5 Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
- 6 Ma J.-A, Cahard D. J. Fluorine Chem. 2007; 128: 975
- 7 Mejía E, Togni A. ACS Catal. 2012; 2: 521
- 8 Shimizu R, Egami H, Nagi T, Chae J, Hamashima Y, Sodeoka M. Tetrahedron Lett. 2010; 51: 5947
- 9 Sodeoka M, Egami H. Pure Appl. Chem. 2014; 86: 1247
- 10 Langlois BR, Laurent E, Roidot N. Tetrahedron Lett. 1991; 32: 7525
- 11 Miller SA, van Beek B, Hamlin TA, Bickelhaupt FM, Leadbeater NE. J. Fluorine Chem. 2018; 214: 94
- 12 Shi X, Li X, Ma L, Shi D. Catalysts 2019; 9: 278
- 13 Seo SB, Taylor JF, Greaney M. Chem. Commun. 2013; 49: 6385
- 14 Mu X, Chen S, Zhen X, Liu G. Chem. Eur. J. 2011; 17: 6039
- 15 Choi WJ, Choi S, Ohkubo K, Fukuzumi S, Cho EJ, You Y. Chem. Sci. 2015; 6: 1454
- 16 Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
- 17 Xie J.-J, Wang Z.-Q, Jiang G.-F. RSC Adv. 2019; 9: 35098
- 18 Das S, Indurthi HK, Saha P, Sharma DK. ChemistrySelect 2023; 8: e202203939
- 19 Abdiaj I, Bottecchia C, Alcazar J, Noёl T. Synthesis 2017; 49: 4978
- 20 Zhao L, Li P, Zhang H, Wang L. Org. Chem. Front. 2019; 6: 87
- 21 Wang S, Dai P, Yan Z, Wang Y, Shao J, Wu Y, Deng C, Zhang W. ChemistrySelect 2019; 4: 10329
- 22 Cui B, Sun H, Xu Y, Li L, Duan L, Li Y.-M. J. Org. Chem. 2018; 83: 6015
- 23 Yang T, Lu H, Shu Y, Ou Y, Hong L, Au C.-T, Qiu R. Org. Lett. 2020; 22: 827
- 24 Zhu D.-L, Wen H, Wu Q, Li J, Young DJ, Wang Y, Li H.-X. Tetrahedron 2023; 135: 133322