Subscribe to RSS

DOI: 10.1055/s-0040-1720100
Low Molecular Weight Supramolecular Allobetuline-, Cyclohexanol-, or Undecanol-Appended 1,2,3-Triazole-Based Gelators: Synthesis and Molecular Dynamics Simulation Study
The authors thank the National Academy of Sciences of Ukraine for financial support in the frame of the projects «Development of methodology «click»-chemistry for create components for advanced complexing materials» (0117U001280).

Abstract
Three novel isomeric supramolecular allobetuline-appended 1,2,3-triazole-based potential gelators and two model compounds with cyclohexanol or undecanol fragments in the structure instead of the triterpenoid platform were synthesized. Their ability to form gels in different solvents was studied experimentally and computationally by molecular dynamics simulations and quantum chemical calculations. We found that the gelling ability of such compounds is driven by the binding energy of intermolecular tail substituent interactions. The less significant factor is the molecule unfolding in a solvent, providing that the gelling substance is actually soluble. Preferred unfolded conformations were identified by classical molecular dynamics simulation and suggested the most prospective 1,2,3-triazole-based potential gelators.
Key words
allobetuline - cyclohexanol - undecanol - supramolecular 1,2,3-triazole-based gelators - click reaction - molecular dynamics simulation - low-molecular-weight organogelatorSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1720100.
- Supporting Information
Publication History
Received: 23 August 2023
Accepted after revision: 15 November 2023
Article published online:
18 December 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Pérez-Ruiz R, Díaz Díaz D. Soft Matter 2015; 11: 5180
- 2 Lim HC, Min SH, Lee E, Jang J, Kim SH, Hong J.-I. ACS Appl. Mater. Interfaces 2015; 7: 11069
- 3 Steed JW. Chem. Commun. 2011; 47: 1379
- 4 Ibrahim MM, Hafez SA, Mahdy MM. Asian J. Pharm. Sci. 2013; 8: 48
- 5 Meng Y, Yang Y. Electrochem. Commun. 2007; 9: 1428
- 6 Chen S, Tong XQ, He HW, Ma M, Shi YQ, Wang X. ACS Appl. Mater. Interfaces 2017; 9: 11924
- 7 Zhikol OA, Shishkina SV, Lipson VV, Semenenko AN, Mazepa AV, Borisov AV, Mateychenko PV. New J. Chem. 2019; 43: 13112
- 8 Ghosh K, Panja A, Panja S. New J. Chem. 2016; 40: 3476
- 9 Bag BG, Dinda SK, Dey PP, Mallia VA, Weiss RG. Langmuir 2009; 25: 8663
- 10 Ramírez-López P, de la Torre MC, Asenjo M, Ramírez-Castellanos J, González-Calbet JM, Rodríguez-Gimeno A, Ramírez de Arellano C, Sierra MA. Chem. Commun. 2011; 47: 10281
- 11 Gao A, Li Y, Lv H, Liu D, Zhao N, Ding Q, Cao X. New J. Chem. 2017; 41: 7924
- 12 Lu J, Hu J, Song Y, Ju Y. Org. Lett. 2011; 13: 2011
- 13 Panja A, Ghosh S, Ghosh K. New J. Chem. 2019; 43: 10270
- 14 Takahashi A, Sakai M, Kato T. Polym. J. 1980; 12: 335
- 15 Tan HM, Moet A, Hiltner A, Baer E. Macromolecules 1983; 16: 28
- 16 McCullagh M, Prytkova T, Tonzani S, Winter ND, Schatz GC. J. Phys. Chem. B 2008; 112: 10388
- 17 Frederix PW. J. M, Scott GG, Abul-Haija YM, Kalafatovic D, Pappas CG, Javid N, Hunt NT, Ulijn RV, Tuttle T. Nat. Chem. 2015; 7: 30
- 18 Lee O.-S, Cho V, Schatz GC. Nano Lett. 2012; 12: 4907
- 19 Velichko YS, Stupp SI, de la Cruz MO. J. Phys. Chem. B 2008; 112: 2326
- 20 Tsuzuki S, Honda K, Uchimaru T, Mikami M. J. Phys. Chem. A 2004; 108: 10311
- 21 Jalkanen J.-P, Pakkanen TA, Rowley RL. J. Chem. Phys. 2004; 120: 1705
- 22 Kim KS, Karthikeyan S, Singh NJ. J. Chem. Theory Comput. 2011; 7: 3471
- 23 Krasutsky PA, Carlson RM, Karim R. US 2002128210, 2002
- 24 Bi J, Zeng X, Tian D, Li H. Org. Lett. 2016; 18: 1092
- 25 Bodor N, El-Koussi AA, Kano M, Khalifa MM. J. Med. Chem. 1988; 31: 1651
- 26 Venuti MC, Alvarez R, Bruno JJ, Strosberg AM, Gu L, Chiang HS, Massey IJ, Chu N, Fried JH. J. Med. Chem. 1988; 31: 2145
- 27 Dega-Szafran Z, Dulewicz E, Brycki B. ARKIVOC 2007; (vi): 90
- 28 Kahn K, Bruice TC. J. Comput. Chem. 2002; 23: 977
- 29 Berendsen HJ. C, van der Spoel D, van Drunen R. Comput. Phys. Commun. 1995; 91: 43
- 30 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision B01. Gaussian, Inc; Wallingford CT: 2009
- 31 Humphrey W, Dalke A, Schulten K. J. Mol. Graphics 1996; 14: 33