Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis
DOI: 10.1055/s-0040-1720135
DOI: 10.1055/s-0040-1720135
feature
Electrochemical Trioxygenation of Allylarenes
We are grateful for financial support from National Science Foundation (Grant No. 22301179), Fundamental Research Funds for the Central Universities (24X010301678, 23X010301599), Excellent Young Scientists Fund Program (Overseas), and Shanghai Jiao Tong University 2030 Initiative. T.S. is a Xiaomi Young Scholar and is grateful for financial support from the Xiaomi Corporation.
Abstract
Trioxygenation is a highly effective method for rapidly increasing molecular complexity by incorporating three C–O bonds from simple, readily available raw materials. In this study, we present an electrochemical trioxygenation protocol for allylarenes, which enables the synthesis of a diverse array of triacetoxylation products without external chemical oxidants. These products, which are difficult to obtain through conventional methods, highlight the potential of electrochemistry in promoting sustainable synthesis.
Key words
organic electrochemistry - trioxygenation - trifunctionalization - allylarenes - C–H oxidationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1720135.
- Supporting Information
Publication History
Received: 23 June 2024
Accepted after revision: 06 August 2024
Article published online:
03 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 D’Auria MV, Minale L, Riccio R. Chem. Rev. 1993; 93: 1839
- 2 Aiello A, Fattorusso E, Menna M. Steroids 1999; 64: 687
- 3 Weidmann V, Maison W. Synthesis 2013; 2201
- 4 Nakamura A, Nakada M. Synthesis 2013; 1421
- 5 Modern Oxidation Methods, 2nd ed. Bäckvall J.-E. Wiley-VCH; Weinheim: 2010: 481
- 6 Yin G, Mu X, Liu G. Acc. Chem. Res. 2016; 49: 2413
- 7 Li Z.-L, Fang G.-C, Gu Q.-S, Liu X.-Y. Chem. Soc. Rev. 2020; 49: 32
- 8 Li Y, Wu D, Cheng H.-G, Yin G. Angew. Chem. Int. Ed. 2020; 59: 7990
- 9 McDonald RI, Liu G, Stahl SS. Chem. Rev. 2011; 111: 2981
- 10 Merino E, Nevado C. Chem. Soc. Rev. 2014; 43: 6598
- 11 Wu Z, Meng J, Liu H, Li Y, Zhang X, Zhang W. Nat. Chem. 2023; 15: 988
- 12 Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 13 Nutting JE, Rafiee M, Stahl SS. Chem. Rev. 2018; 118: 4834
- 14 Novaes LF. T, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Chem. Soc. Rev. 2021; 50: 7941
- 15 Moeller KD. Chem. Rev. 2018; 118: 4817
- 16 Shi S.-H, Liang Y, Jiao N. Chem. Rev. 2021; 121: 485
- 17 Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Chem. Rev. 2022; 122: 3180
- 18 Ma C, Fang P, Liu Z.-R, Xu S.-S, Xu K, Cheng X, Lei A, Xu H.-C, Zeng C, Mei T.-S. Sci. Bull. 2021; 66: 2412
- 19 Liu Y, Li P, Wang Y, Qiu Y. Angew. Chem. Int. Ed. 2023; 62: e202306679
- 20 Kärkäs MD. Chem. Soc. Rev. 2018; 47: 5786
- 21 Huang H, Steiniger KA, Lambert TH. J. Am. Chem. Soc. 2022; 144: 12567
- 22 Shen T, Li Y.-L, Ye K.-Y, Lambert TH. Nature 2023; 614: 275
- 23 Park JH, Park CY, Song HS, Huh YS, Kim GH, Park CP. Org. Lett. 2013; 15: 752
- 24 Vanhoof JR, De Smedt PJ, Derhaeg J, Ameloot R, De Vos DE. Angew. Chem. Int. Ed. 2023; 62: e202311539
- 25 Luo M.-J, Xiao Q, Li J.-H. Chem. Soc. Rev. 2022; 51: 7206
- 26 Margrey KA, Nicewicz DA. Acc. Chem. Res. 2016; 49: 1997
- 27 Feng R, Smith JA, Moeller KD. Acc. Chem. Res. 2017; 50: 2346
- 28 Chen N, Xu H.-C. Chem. Rec. 2021; 21: 2306
- 29 Wöste TH, Muñiz K. Synthesis 2016; 48: 816
- 30 Singh B, Sharma S, Taneja SC, Shankar R, Sangwan PL. Synth. Commun. 2016; 46: 361