Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2024; 56(23): 3653-3659
DOI: 10.1055/s-0040-1720140
DOI: 10.1055/s-0040-1720140
paper
Iron-Catalyzed Deboronation/Cyanoalkylation of Vinyl Boronic Acids with Cyclobutanone Ketoximes
The authors are grateful to the Taishan Scholar Youth Program of Shandong Province (No. tsqnz20230623), and the Academic Promotion Program of Shandong First Medical University (No. 2019LJ003) for financial support.
Abstract
In this paper, an iron-catalyzed deboronation/cyanoalkylation of vinyl boronic acids for the preparation of distal cyanoalkyl alkenes with vinyl boronic acids as radical acceptor and activator is reported. In this reaction, various cyclobutanone oximes and substituted vinyl boronic acids can be transformed into the corresponding cyanoalkylated alkenes in moderate to good yields under these conditions. Mechanistic studies indicated that a single-electron transfer process may be involved in this transformation.
Key word
iron catalysis - cyclobutanone oximes - N–O bond cleavage - iminyl radical - cyanoalkylationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1720140.
- Supporting Information
Publication History
Received: 06 August 2024
Accepted after revision: 06 September 2024
Article published online:
30 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Fleming FF. Nat. Prod. Rep. 1999; 16: 597
- 1b Fleming FF, Wang Q. Chem. Rev. 2003; 103: 2035
- 1c Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
- 1d Lopez R, Palomo C. Angew. Chem. Int. Ed. 2015; 54: 13170
- 1e Li Y, Shang J.-Q, Wang X.-X, Xia W.-J, Yang T, Xin Y, Li Y.-M. Org. Lett. 2019; 21: 2227
- 2a Makosza M. Chem. Soc. Rev. 2010; 39: 2855
- 2b Chu X.-Q, Ge D, Shen Z.-L, Loh T.-P. ACS Catal. 2018; 8: 258
- 2c Wu J, Zhang J.-Y, Gao P, Xu S.-L, Guo L.-N. J. Org. Chem. 2018; 83: 1046
- 2d Yang L, Gao P, Duan X.-H, Gu Y.-R, Guo L.-N. Org. Lett. 2018; 20: 1034
- 2e Zhao J.-F, Gao P, Duan X.-H, Guo L.-N. Adv. Synth. Catal. 2018; 360: 1775
- 2f Boivin J, Fouquet E, Zard SZ. J. Am. Chem. Soc. 1991; 113: 1055
- 2g Boivin J, Fouquet E, Zard SZ. Tetrahedron Lett. 1991; 32: 4299
- 2h Yang H.-B, Selander N. Chem. Eur. J. 2017; 23: 1779
- 2i Jackman MM, Im S, Bohman SR, Lo CC. L, Garrity AL, Castle SL. Chem. Eur. J. 2018; 24: 594
- 3a Shen X, Zhao J.-J, Yu S. Org. Lett. 2018; 20: 5523
- 3b Lu X.-Y, Xia Z.-J, Gao A, Liu Q.-L, Jiang R.-C, Liu C.-C. J. Org. Chem. 2021; 86: 8829
- 4a Yu X.-Y, Zhao Q.-Q, Chen J, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2018; 57: 15505
- 4b Li L, Chen H, Mei M, Zhou L. Chem. Commun. 2017; 53: 11544
- 5a Werner A, Piguet A. Ber. Dtsch. Chem. Ges. 1904; 37: 4295
- 5b Werner A, Detscheff T. Ber. Dtsch. Chem. Ges. 1905; 38: 69
- 5c Jun C.-H. Chem. Soc. Rev. 2004; 33: 610
- 5d Leemans E, D’hooghe M, De Kimpe N. Chem. Rev. 2011; 111: 3268
- 5e Li J, Hu Y, Zhang D, Liu Q, Dong Y, Liu H. Adv. Synth. Catal. 2017; 359: 710
- 6a Zard SZ. Chem. Soc. Rev. 2008; 37: 1603
- 6b Rykaczewski KA, Wearing ER, Blackmun DE, Schindler CS. Nat. Synth. 2022; 1: 24
- 6c Zard SZ. ARKIVOC 2024; 202312112
- 6d Kalsoom I, Bilal M, Kanwal A, Rasool N, Nazeer U, Ciurea C, Neculau AE, Martinescu CC. J. Saudi Chem. Soc. 2024; 28: 101848
- 7a Zhang J, Wu J, Chang X, Wang P, Xia J, Wu J. Org. Chem. Front. 2022; 9: 917
- 7b He F.-S, Bao P, Yu F, Zeng L.-H, Deng W.-P, Wu J. Org. Lett. 2021; 23: 7472
- 8a Xia P.-J, Hu Y.-Z, Ye Z-P, Li X.-J, Xiang H.-Y, Yang H. J. Org. Chem. 2020; 85: 3538
- 8b Yin Z, Rabeah J, Brückner A, Wu X.-F. ACS Catal. 2018; 8: 10926
- 8c Nishimura T, Uemura S. J. Am. Chem. Soc. 2000; 122: 12049
- 8d Nishimura T, Nishiguchi Y, Maeda Y, Uemura S. J. Org. Chem. 2004; 69: 5342
- 8e Nishimura T, Yoshinaka T, Nishiguchi Y, Maeda Y, Uemura S. Org. Lett. 2005; 7: 2425
- 8f Gu Y.-R, Duan X.-H, Yang L, Guo L.-N. Org. Lett. 2017; 19: 5908
- 9a Zhao J.-F, Duan X.-H, Gu Y-R, Gao P, Guo L-N. Org. Lett. 2018; 20: 4614
- 9b Yu X.-Y, Chen J.-R, Wang P.-Z, Yang M.-N, Liang D, Xiao W.-J. Angew. Chem. Int. Ed. 2018; 57: 738
- 9c Liu Y, Wang Q.-L, Chen Z, Li H, Xiong B.-Q, Zhang P.-L, Tang K.-W. Chem. Commun. 2020; 56: 3011
- 9d Zhao X, Ji L, Gao Y, Sun T, Qiao J, Li A, Lu K. J. Org. Chem. 2021; 86: 11399
- 9e Guin S, MaJee D, Samanta S. Asian J. Org. Chem. 2021; 10: 1595
- 9f Zhou N, Wu S, Kuang K, Xia Z, Xu Q, Zhang M. Org. Chem. Front. 2021; 8: 6032
- 9g Guan T, Guo J.-Y, Zhang Q.-H, Xu X.-W, Yu X.-Y, Zhang Y, Zhao K. Green Chem. 2022; 24: 6524
- 10a Su J, Cai Y, Xu X. Org. Lett. 2019; 21: 9055
- 10b Sauer GS, Lin S. ACS Catal. 2018; 8: 5175
- 10c Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem. Rev. 2017; 117: 9333
- 10d McGuinness DS. Chem. Rev. 2011; 111: 2321
- 11 Fleming FF, Zhang Z. Tetrahedron 2005; 61: 747
- 12a Xiao T, Huang H, Anand D, Zhou L. Synthesis 2020; 52: 1585
- 12b Xiao W, Wu J. Chin. Chem. Lett. 2020; 31: 3083
- 12c Xiao F, Guo Y, Zeng Y.-F. Adv. Synth. Catal. 2021; 363: 120
- 13a Qi X, Diao T. ACS Catal. 2020; 10: 8542
- 13b Chen X, Cheng Z, Guo J, Lu Z. Nat. Commun. 2018; 9: 3939
- 14 Xia P.-J, Ye Z.-P, Hu Y.-Z, Song D, Xiang H.-Y, Chen X.-Q, Yang H. Org. Lett. 2019; 21: 2658
- 15a Xia X, Chen X, Zhao B, Yuan Y. Tetrahedron 2023; 130: 133179
- 15b Shi D, Xia X, Zhao B, Yuan Y. Org. Biomol. Chem. 2023; 21: 6298