Subscribe to RSS
DOI: 10.1055/s-0040-1720382
Recent Progress in Amination Enabled by Transition-Metal-Free C(sp2)–O/C(sp2)–S Bond Cleavage Strategy
We would like to thank the funding supported by National Key Research and Development Program of China (2018YFA0902300) and Huxiang Youth Talent Support Program (2019RS2022).
Abstract
Recently, intense efforts have been dedicated to the development of novel synthetic strategies to access aromatic amines due to their importance in the pharmaceuticals, agrochemicals, materials, and natural product areas. Although numerous transition-metal-catalyzed C–N formation strategies have been described for the preparation of aromatic amines in the past few decades, complementary methods under transition-metal-free conditions are still required. We present the recent advances in the exploration of innovative amination approaches via C(sp2)–O/C(sp2)–S bond cleavage in this review.
1 Introduction
2 Stoichiometric Base-Promoted Amination
3 Base-Catalyzed Amination
4 Photoredox-Catalyzed Amination
5 Acid-Promoted Amination
6 Conclusion and Perspectives
Key words
amination - arylamines - transition-metal-free - base-promoted - acid-catalyzed - photoredox-catalyzedPublication History
Received: 29 May 2021
Accepted after revision: 18 June 2021
Article published online:
17 August 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Cheng Q, Tu H.-F, Zheng C, Qu J.-P, Helmchen G, You S.-L. Chem. Rev. 2019; 119: 1855
- 1b Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
- 1c Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
- 1d Amination and Formation of sp2 C–N Bonds. In Topics in Organometallic Chemistry, Vol. 46. Taillefer M, Ma D. Springer; Heidelberg: 2013
- 1e West MJ, Fyfe JW. B, Vantourout JC, Watson AJ. B. Chem. Rev. 2019; 119: 12491
- 1f Wu W.-T, Zhang L, You S.-L. Chem. Soc. Rev. 2016; 45: 1570
- 1g Dhillon S. Drugs. 2015; 75: 543
- 1h Albano G, Claudio E, Aronica LA. ChemistrySelect 2017; 2: 384
- 2a For nilotinib, see: Weisberg E, Manley P, Mestan J, Cowan-Jacob S, Ray A, Griffin JD. Br. J. Cancer 2006; 94: 1765
- 2b For erlotinib, see: Smith J. Clin. Ther. 2005; 27: 1513
- 3 For imatinib, see: Quintas-Cardama A, Kantarjian H, Cortes J. Nat. Rev. Drug Discov. 2007; 6: 834
- 4a Hesp KD, Genovino J. In Synthetic Methods in Drug Discovery: Vol. 1 . Blakemore DC, Doyle PM, Fobian YM. RSC Drug Discovery Series No. 52; Royal Society of Chemistry; London: 2016: 170-241
- 4b Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D. Angew. Chem. Int. Ed. 2017; 56: 16136
- 4c Zhou W, Fan M, Yin J, Jiang Y, Ma D. J. Am. Chem. Soc. 2015; 137: 11942
- 4d Green RA, Hartwig JF. Angew. Chem. Int. Ed. 2015; 54: 3768
- 5a Lo QA, Sale D, Braddock DC, Davies RP. ACS Catal. 2018; 8: 101
- 5b Ullmann F. Ber. Dtsch. Chem. Ges. 1903; 36: 2382
- 5c Goodbrand HB, Hu N.-X. J. Org. Chem. 1999; 64: 670
- 5d Vantourout JC, Miras HN, Isidro-Llobet A, Sproules S, Watson AJ. B. J. Am. Chem. Soc. 2017; 139: 4769
- 6 McGuire RT, Paffile JF. J, Zhou Y, Stradiotto M. ACS Catal. 2019; 9: 9292
- 7a Romero NA, Margrey KA, Tay NE, Nicewicz DA. Science 2015; 349: 1326
- 7b Ito M, Nakagawa T, Higuchi K, Sugiyama S. Org. Biomol. Chem. 2018; 16: 6876
- 7c Das SK, Roy S, Khatua H, Chattopadhyay B. J. Am. Chem. Soc. 2018; 140: 8429
- 7d Sauermann N, Mei R, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 5090
- 7e Louillat M.-L, Patureau FW. Chem. Soc. Rev. 2014; 43: 901
- 7f Gao X, Wang P, Zeng L, Tang S, Lei A. J. Am. Chem. Soc. 2018; 140: 4195
- 7g Wang P, Li G.-C, Jain P, Farmer ME, He J, Shen P.-X, Yu J.-Q. J. Am. Chem. Soc. 2016; 138: 14092
- 8a Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita A.-M, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346
- 8b Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
- 8c Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
- 8d Li B.-J, Yu D.-G, Sun C.-L, Shi Z.-J. Chem. Eur. J. 2011; 17: 1728
- 9a Hooper JF, Young RD, Weller AS, Willis MC. Chem. Eur. J. 2013; 19: 3125
- 9b Barbero N, Martin R. Org. Lett. 2012; 14: 796
- 9c Hooper JF, Young RD, Pernik I, Weller AS, Willis MC. Chem. Sci. 2013; 4: 1568
- 9d Pernik I, Hooper JF, Chaplin AB, Weller AS, Willis MC. ACS Catal. 2012; 2: 2779
- 9e Pan F, Wang H, Shen P.-X, Zhao J, Shi Z.-J. Chem. Sci. 2013; 4: 1573
- 9f Yang J, Xiao J, Chen T, Yin S.-F, Han L.-B. Chem. Commun. 2016; 52: 12233
- 9g Uetake Y, Niwa T, Hosoya T. Org. Lett. 2016; 18: 2758
- 9h Lian Z, Bhawal BN, Yu P, Morandi B. Science 2017; 356: 1059
- 9i Sugahara T, Murakami K, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2014; 53: 9329
- 10 Murray SG, Hartley FR. Chem. Rev. 1981; 81: 365
- 11 Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
- 12a Woiwode TF, Rose C, Wandless TJ. J. Org. Chem. 1998; 63: 9594
- 12b Terrier F. Modern Nucleophilic Aromatic Substitution. Wiley-VCH; Weinheim: 2013
- 13a Gallardo I, Guirado G, Marquet J. J. Org. Chem. 2002; 67: 2548
- 13b Egris R, Villacampa M, Menéndez JC. Chem. Eur. J. 2009; 15: 10930
- 14 Benkeser RA, DeBoer CE. J. Org. Chem. 1956; 21: 365
- 15 ten Hoeve W, Kruse CG, Luteyn JM, Thiecke JR. G, Wynberg H. J. Org. Chem. 1993; 58: 5101
- 16 Gant GG, Meyers AI. J. Am. Chem. Soc. 1992; 114: 1010
- 17 Belaud-Rotureau M, Le TT, Phan TH. T, Nguyen TH, Aissaoui R, Gohier F, Derdour A, Nourry A, Castanet A.-S, Nguyen KP. P, Mortier J. Org. Lett. 2010; 22: 2406
- 18 Sakamoto M, Fujita K, Yagishita F, Unosawa A, Mino T, Fujita T. Chem. Commun. 2011; 47: 4267
- 19 Kaga A, Hayashi H, Hakamata H, Oi M, Uchiyama M, Takita R, Chiba S. Angew. Chem. Int. Ed. 2017; 56: 11807
- 20 Pang JH, Kaga A, Chiba S. Chem. Commun. 2018; 54: 10324
- 21 Pang JH, Owg DY, Watanabe K, Takita R, Chiba S. Synthesis 2020; 52: 393
- 22 Wang X, Yang Q.-X, Long C.-Y, Tan Y, Qu Y.-X, Su M.-H, Huang S.-J, Tan W, Wang X.-Q. Org. Lett. 2019; 21: 5111
- 23 Wang X, Long C.-Y, Su M.-H, Qu Y.-X, Li S.-H, Zhang X.-J, Huang S.-J, Wang X.-Q. Org. Process Res. Dev. 2019; 23: 1587
- 24 Ikawa T, Masuda S, Akai S. Chem. Eur. J. 2020; 26: 4320
- 25 Wang X, Tang Y, Long C.-Y, Dong W.-K, Li C, Xu X, Zhao W, Wang X.-Q. Org. Lett. 2018; 20: 4749
- 26 Tian ZY, Xia XX, Teng HB, Hu YT, Zhang CP. Chem. Eur. J. 2018; 24: 13744
- 27 Shigeno M, Hayashi K, Nozawa-Kumada K, Kondo Y. Org. Lett. 2019; 21: 5505
- 28a Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 28b Wang C.-S, Dixneuf PH, Soulé J.-F. Chem. Rev. 2018; 118: 7532
- 28c Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 28d Lang X, Zhao J, Chen X. Chem. Soc. Rev. 2016; 45: 3026
- 28e Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
- 28f Corrigan N, Shanmugam S, Xu J, Boyer C. Chem. Soc. Rev. 2016; 45: 6165
- 28g Xie J, Jin H, Hashmi AS. K. Chem. Soc. Rev. 2017; 46: 5193
- 28h Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 29a McManus JB, Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 2880
- 29b Margrey KA, McManus JB, Bonazzi S, Zecri F, Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 11288
- 29c Holmberg-Douglas N, Nicewicz DA. Org. Lett. 2019; 21: 7114
- 29d Tay NE. S, Chen W, Levens A, Pistritto VA, Huang Z, Wu ZH, Li ZB, Nicewicz DA. Nat. Catal. 2020; 3: 734
- 30a Tay NE. S, Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 16100
- 30b Venditto NJ, Nicewicz DA. Org. Lett. 2020; 22: 4817
- 31 Li H, Bunrit A, Lu J, Gao Z, Luo N, Liu H, Wang F. ACS Catal. 2019; 9: 8843
- 32a Bucherer HT. J. Prakt. Chem. 1904; 69: 49
- 32b Seeboth H. Angew. Chem. Int. Ed. Engl. 1967; 6: 307
- 33 Mishra AK, Verma A, Biswas S. J. Org. Chem. 2017; 82: 3403