Synthesis 2022; 54(05): 1309-1320 DOI: 10.1055/s-0040-1720890
Facile Synthesis of Spirocyclic Tetrahydroquinolines via C(sp3 )–H Functionalization in a Cascade Redox Process
Liping Yu
a
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. of China
c
College of Landscape and Forestry, Qingdao Agricultural University, Qingdao 266109, P. R. of China
,
Bin Qiu
b
College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. of China
,
Peizhen Dong
b
College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. of China
,
Jian Xiao∗
b
College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. of China
,
Shitao Yu∗
a
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. of China
› Author Affiliations We are grateful to the Taishan Scholar Project of Shandong Province (tsqn201909131, ts201511033), NSFC (21878167), and The Key Research Foundation of Science of Shandong Province (ZR2020KB007). Project support by the Natural Science Foundation of Shandong Province (ZR2020QB047) and the Key Research and Development Program of Qingdao Technical College (2020ZDYF06) are also gratefully acknowledged.
Abstract
An environmentally benign cascade redox process was developed for the efficient construction of the pharmaceutically significant spirocyclic tetrahydroquinolines via sequential SN Ar/Knoevenagel condensation/[1,5]-hydride transfer/cyclization. This green transformation has the features of being catalyst-free, additive-free, operationally simple, and has high step- and atom-economy.
Key words
tetrahydroquinoline -
C–H functionalization -
cascade reaction -
hydride transfer
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1720890.
Supporting Information
Publication History
Received: 28 July 2021
Accepted after revision: 30 August 2021
Article published online: 25 October 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Ruble JC,
Hurd AR,
Johnson TA,
Sherry DA,
Barbachyn MR,
Toogood PL,
Bundy GL,
Graber DR,
Kamilar GM.
J. Am. Chem. Soc. 2009; 131: 3991
1b
Basarab GS,
Brassil P,
Doig P,
Galullo V,
Haimes HB,
Kern G,
Kutschke A,
McNulty J,
Schuck VJ. A,
Stone G,
Gowravaram M.
J. Med. Chem. 2014; 57: 9078
1c
Basarab GS,
Doig P,
Galullo V,
Kern G,
Kimzey A,
Kutschke A,
Newman JP,
Morningstar M,
Mueller J,
Otterson L,
Vishwanathan K,
Zhou F,
Gowravaram M.
J. Med. Chem. 2015; 58: 6264
1d
Chan PF,
Srikannathasan V,
Huang J,
Cui H,
Fosberry AP,
Gu M,
Hann MM,
Hibbs M,
Homes P,
Ingraham K,
Pizzollo J,
Shen C,
Shillings AJ,
Spitzfaden CE,
Tanner R,
Theobald AJ,
Stavenger RA,
Bax BD,
Gwynn MN.
Nat. Commun. 2015; 6: 10048
2a
Yu D,
Suzuki M,
Xie L,
Morris-Natschke SL,
Lee KH.
Med. Res. Rev. 2003; 23: 322
2b
Xue H,
Lu X,
Zheng P,
Liu L,
Han C,
Hu J,
Liu Z,
Ma T,
Li Y,
Wang L,
Chen Z,
Liu G.
J. Med. Chem. 2010; 53: 1397
3a
Kodanko JJ,
Overman LE.
Angew. Chem. Int. Ed. 2003; 42: 2528
3b
Garg NK,
Hiebert S,
Overman LE.
Angew. Chem. Int. Ed. 2006; 45: 2912
3c
Steven A,
Overman LE.
Angew. Chem. Int. Ed. 2007; 46: 5488
3d
Codelli JA,
Puchlopek AL,
Reisman SE.
J. Am. Chem. Soc. 2012; 134: 1930
3e
Kieffer ME,
Chuang KV,
Reisman SE.
J. Am. Chem. Soc. 2013; 135: 5557
For reviews, see:
4a
Mátyus P,
Éliás O,
Tapolcsányi P,
Polonka-Bálint Á,
Halász-Dajka B.
Synthesis 2006; 2625
4b
Peng B,
Maulide N.
Chem. Eur. J. 2013; 19: 13274
4c
Wang L,
Xiao J.
Adv. Synth. Catal. 2014; 356: 1137
4d
Haibach MC,
Seidel D.
Angew. Chem. Int. Ed. 2014; 53: 5010
4e
Wang L,
Xiao J.
Top. Curr. Chem. 2016; 374: 17
4f
Kwon SJ,
Kim DY.
Chem. Rec. 2016; 16: 1191
4g
Xiao M,
Zhu S,
Shen Y.-B,
Wang L,
Xiao J.
Chin. J. Org. Chem. 2018; 38: 328
4h
An X.-D,
Xiao J.
Org. Chem. Front. 2021; 8: 1364
For representative examples, see:
4i
Kaval N,
Dehaen W,
Mátyus P,
Eycken EV.
Green Chem. 2004; 6: 125
4j
McQuaid KM,
Sames D.
J. Am. Chem. Soc. 2009; 131: 402
4k
Cui L,
Peng Y,
Zhang L.
J. Am. Chem. Soc. 2009; 131: 8394
4l
Haibach MC,
Deb I,
De C K,
Seidel D.
J. Am. Chem. Soc. 2011; 133: 2100
4m
Bolte B,
Gagosz F.
J. Am. Chem. Soc. 2011; 133: 7696
4n
Chen D,
Han Z,
He Y,
Yu J,
Gong L.
Angew. Chem. Int. Ed. 2012; 51: 12307
4o
Bhunia S,
Ghorpade S,
Huple DB,
Liu R.
Angew. Chem. Int. Ed. 2012; 51: 2939
4p
Jiao Z,
Zhang S,
He C,
Tu Y,
Wang S,
Zhang F,
Zhang Y,
Li H.
Angew. Chem. Int. Ed. 2012; 51: 8811
4q
Suh CW,
Kwon SJ,
Kim DY.
Org. Lett. 2017; 19: 1334
4r
Ramakumar K,
Maji T,
Partridge JJ,
Tunge JA.
Org. Lett. 2017; 19: 4014
4s
Yoshida T,
Mori K.
Chem. Commun. 2017; 53: 4319
4t
Mori K,
Isogai R,
Kamei Y,
Yamanaka M,
Akiyama T.
J. Am. Chem. Soc. 2018; 140: 6203
4u
Jurberg ID,
Peng B,
Woestefeld E,
Wasserloos M,
Maulide N.
Angew. Chem. Int. Ed. 2012; 51: 1950
4v
Yokoo K,
Mori K.
Org. Lett. 2020; 22: 244
4w
Mori K,
Umeharaa N,
Akiyama T.
Chem. Sci. 2018; 9: 7327
4x
Mori K,
Kurihara K,
Yabe S,
Yamanaka M,
Akiyama T.
J. Am. Chem. Soc. 2014; 136: 3744
For selected examples, see:
5a
Kang YK,
Kim SM,
Kim DY.
J. Am. Chem. Soc. 2010; 132: 11847
5b
Mori K,
Ehara K,
Kurihara K,
Akiyama T.
J. Am. Chem. Soc. 2011; 133: 6166
5c
Mori K,
Sueoka S,
Akiyama T.
J. Am. Chem. Soc. 2011; 133: 2424
5d
Zhou G,
Liu F,
Zhang J.
Chem. Eur. J. 2011; 17: 3101
5e
Cao W,
Liu X,
Wang W,
Lin L,
Feng X.
Org. Lett. 2011; 13: 600
5f
Chen L,
Zhang L,
Lv J,
Cheng J,
Luo S.
Chem. Eur. J. 2012; 18: 8891
For selected examples, see:
6a
Zhang L,
Chen L,
Lv J,
Cheng J.-P,
Luo S.
Chem. Asian J. 2012; 7: 2569
6b
Alajarin M,
Bonillo B,
Marin-Luna M,
Sanchez-Andrada P,
Vidal A.
Chem. Eur. J. 2013; 47: 16093
6c
Murarka S,
Deb I,
Zhang C,
Seidel D.
J. Am. Chem. Soc. 2009; 131: 13226
6d
Liu S,
Qu J,
Wang B.
Chem. Commun. 2018; 54: 7928
6e
Liu S,
Zhang W,
Qu J,
Wang B.
Org. Chem. Front. 2018; 5: 3008
7a
Zhu S,
Chen C,
Xiao M,
Yu L,
Wang L,
Xiao J.
Green Chem. 2017; 19: 5653
7b
Li S.-S,
Lv X,
Ren D,
Shao C.-L,
Liu Q,
Xiao J.
Chem. Sci. 2018; 9: 8253
7c
Li S.-S,
Zhou L,
Wang L,
Zhao H,
Yu L,
Xiao J.
Org. Lett. 2018; 20: 138
7d
Wang S,
An X.-D,
Li S.-S,
Liu X,
Liu Q,
Xiao J.
Chem. Commun. 2018; 54: 13833
7e
Li S.-S,
Zhu S,
Chen C,
Duan K,
Liu Q,
Xiao J.
Org. Lett. 2019; 21: 1058
7f
Lv X,
Hu F,
Duan K,
Li S.-S,
Liu Q,
Xiao J.
J. Org. Chem. 2019; 84: 1833
7g
Zhu S,
Chen C,
Duan K,
Sun Y.-M,
Li S.-S,
Liu Q,
Xiao J.
J. Org. Chem. 2019; 84: 8440
7h
An XD,
Duan K,
Li X.-J,
Yang J.-M,
Lu Y.-N,
Liu Q,
Xiao J.
J. Org. Chem. 2019; 84: 11839
7i
Shen Y.-B,
Li L.-F,
Xiao M.-Y,
Yang J.-M,
Liu Q,
Xiao J.
J. Org. Chem. 2019; 84: 13935
7j
Zhou L,
Shen Y.-B,
An X.-D,
Li X.-J,
Li S.-S,
Liu Q,
Xiao J.
Org. Lett. 2019; 21: 8543
7k
Wang S,
Shen Y.-B,
Li L.-F,
Qiu B,
Yu L,
Liu Q,
Xiao J.
Org. Lett. 2019; 21: 8904
7l
Shen Y.-B,
Wang L.-X,
Sun Y.-M,
Dong F.-Y,
Yu L,
Liu Q,
Xiao J.
J. Org. Chem. 2020; 85: 1915
7m
Duan K,
Shi H,
Wang L.-X,
Li S.-S,
Xu L,
Xiao J.
Org. Chem. Front. 2020; 7: 2511
7n
Duan K,
An X.-D,
Li L.-F,
Sun L.-L,
Qiu B,
Li X.-J,
Xiao J.
Org. Lett. 2020; 22: 2537
7o
Zhou L,
An X.-D,
Yang S,
Li X.-J,
Shao C.-L,
Liu Q,
Xiao J.
Org. Lett. 2020; 22: 776
8
Jessop PG.
Green Chem. 2011; 13: 1391
9
Vadola PA,
Carrera I,
Sames D.
J. Org. Chem. 2012; 77: 6689
10a
Trost BM,
Schroeder GM.
J. Org. Chem. 2000; 65: 1569
10b
Renard A,
Lhomme J,
Kotera M.
J. Org. Chem. 2002; 67: 1302
10c
Best D,
Burns DJ,
Lam HW.
Angew. Chem. Int. Ed. 2015; 54: 7410
11
Zhao T,
Zhang H,
Cui L,
Wang C,
Qu J,
Wang B.
ChemistrySelect 2016; 1: 3713
12a
Mori K,
Sueoka S,
Akiyama T.
Chem. Lett. 2011; 40: 1386
12b
Wang L,
Xiao J.
Org. Chem. Front. 2016; 3: 635
13a
Bella M,
Kobbelgaard S,
Jørgensen KA.
J. Am. Chem. Soc. 2005; 127: 3670
13b
Kobbelgaard S,
Bella M,
Jørgensen KA.
J. Org. Chem. 2006; 71: 4980
13c
Kumar A,
Yadav A,
Verma A,
Jana S,
Sattar M,
Kumar S,
Prasad CD,
Kumar S.
Chem. Commun. 2014; 50: 9481
14a
Miller AA.
Antimicrob. Agents Chemother. 2008; 52: 2806
14b
Barbachyn MR,
Bundy GL,
Dobrowolski PJ,
Hurd AR,
Martin GE,
McNamara DJ,
Palmer JR,
Romero DL,
Romero AG,
Ruble JC,
Sherry DA,
Thomasco LM,
Toogood PL.
US Patent 7,208,490, 2003