Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2022; 54(05): 1309-1320
DOI: 10.1055/s-0040-1720890
DOI: 10.1055/s-0040-1720890
paper
Facile Synthesis of Spirocyclic Tetrahydroquinolines via C(sp3)–H Functionalization in a Cascade Redox Process
We are grateful to the Taishan Scholar Project of Shandong Province (tsqn201909131, ts201511033), NSFC (21878167), and The Key Research Foundation of Science of Shandong Province (ZR2020KB007). Project support by the Natural Science Foundation of Shandong Province (ZR2020QB047) and the Key Research and Development Program of Qingdao Technical College (2020ZDYF06) are also gratefully acknowledged.
Abstract
An environmentally benign cascade redox process was developed for the efficient construction of the pharmaceutically significant spirocyclic tetrahydroquinolines via sequential SNAr/Knoevenagel condensation/[1,5]-hydride transfer/cyclization. This green transformation has the features of being catalyst-free, additive-free, operationally simple, and has high step- and atom-economy.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1720890.
- Supporting Information
Publication History
Received: 28 July 2021
Accepted after revision: 30 August 2021
Article published online:
25 October 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Ruble JC, Hurd AR, Johnson TA, Sherry DA, Barbachyn MR, Toogood PL, Bundy GL, Graber DR, Kamilar GM. J. Am. Chem. Soc. 2009; 131: 3991
- 1b Basarab GS, Brassil P, Doig P, Galullo V, Haimes HB, Kern G, Kutschke A, McNulty J, Schuck VJ. A, Stone G, Gowravaram M. J. Med. Chem. 2014; 57: 9078
- 1c Basarab GS, Doig P, Galullo V, Kern G, Kimzey A, Kutschke A, Newman JP, Morningstar M, Mueller J, Otterson L, Vishwanathan K, Zhou F, Gowravaram M. J. Med. Chem. 2015; 58: 6264
- 1d Chan PF, Srikannathasan V, Huang J, Cui H, Fosberry AP, Gu M, Hann MM, Hibbs M, Homes P, Ingraham K, Pizzollo J, Shen C, Shillings AJ, Spitzfaden CE, Tanner R, Theobald AJ, Stavenger RA, Bax BD, Gwynn MN. Nat. Commun. 2015; 6: 10048
- 2a Yu D, Suzuki M, Xie L, Morris-Natschke SL, Lee KH. Med. Res. Rev. 2003; 23: 322
- 2b Xue H, Lu X, Zheng P, Liu L, Han C, Hu J, Liu Z, Ma T, Li Y, Wang L, Chen Z, Liu G. J. Med. Chem. 2010; 53: 1397
- 3a Kodanko JJ, Overman LE. Angew. Chem. Int. Ed. 2003; 42: 2528
- 3b Garg NK, Hiebert S, Overman LE. Angew. Chem. Int. Ed. 2006; 45: 2912
- 3c Steven A, Overman LE. Angew. Chem. Int. Ed. 2007; 46: 5488
- 3d Codelli JA, Puchlopek AL, Reisman SE. J. Am. Chem. Soc. 2012; 134: 1930
- 3e Kieffer ME, Chuang KV, Reisman SE. J. Am. Chem. Soc. 2013; 135: 5557
- 4a Mátyus P, Éliás O, Tapolcsányi P, Polonka-Bálint Á, Halász-Dajka B. Synthesis 2006; 2625
- 4b Peng B, Maulide N. Chem. Eur. J. 2013; 19: 13274
- 4c Wang L, Xiao J. Adv. Synth. Catal. 2014; 356: 1137
- 4d Haibach MC, Seidel D. Angew. Chem. Int. Ed. 2014; 53: 5010
- 4e Wang L, Xiao J. Top. Curr. Chem. 2016; 374: 17
- 4f Kwon SJ, Kim DY. Chem. Rec. 2016; 16: 1191
- 4g Xiao M, Zhu S, Shen Y.-B, Wang L, Xiao J. Chin. J. Org. Chem. 2018; 38: 328
- 4h An X.-D, Xiao J. Org. Chem. Front. 2021; 8: 1364
- 4i Kaval N, Dehaen W, Mátyus P, Eycken EV. Green Chem. 2004; 6: 125
- 4j McQuaid KM, Sames D. J. Am. Chem. Soc. 2009; 131: 402
- 4k Cui L, Peng Y, Zhang L. J. Am. Chem. Soc. 2009; 131: 8394
- 4l Haibach MC, Deb I, De C K, Seidel D. J. Am. Chem. Soc. 2011; 133: 2100
- 4m Bolte B, Gagosz F. J. Am. Chem. Soc. 2011; 133: 7696
- 4n Chen D, Han Z, He Y, Yu J, Gong L. Angew. Chem. Int. Ed. 2012; 51: 12307
- 4o Bhunia S, Ghorpade S, Huple DB, Liu R. Angew. Chem. Int. Ed. 2012; 51: 2939
- 4p Jiao Z, Zhang S, He C, Tu Y, Wang S, Zhang F, Zhang Y, Li H. Angew. Chem. Int. Ed. 2012; 51: 8811
- 4q Suh CW, Kwon SJ, Kim DY. Org. Lett. 2017; 19: 1334
- 4r Ramakumar K, Maji T, Partridge JJ, Tunge JA. Org. Lett. 2017; 19: 4014
- 4s Yoshida T, Mori K. Chem. Commun. 2017; 53: 4319
- 4t Mori K, Isogai R, Kamei Y, Yamanaka M, Akiyama T. J. Am. Chem. Soc. 2018; 140: 6203
- 4u Jurberg ID, Peng B, Woestefeld E, Wasserloos M, Maulide N. Angew. Chem. Int. Ed. 2012; 51: 1950
- 4v Yokoo K, Mori K. Org. Lett. 2020; 22: 244
- 4w Mori K, Umeharaa N, Akiyama T. Chem. Sci. 2018; 9: 7327
- 4x Mori K, Kurihara K, Yabe S, Yamanaka M, Akiyama T. J. Am. Chem. Soc. 2014; 136: 3744
- 5a Kang YK, Kim SM, Kim DY. J. Am. Chem. Soc. 2010; 132: 11847
- 5b Mori K, Ehara K, Kurihara K, Akiyama T. J. Am. Chem. Soc. 2011; 133: 6166
- 5c Mori K, Sueoka S, Akiyama T. J. Am. Chem. Soc. 2011; 133: 2424
- 5d Zhou G, Liu F, Zhang J. Chem. Eur. J. 2011; 17: 3101
- 5e Cao W, Liu X, Wang W, Lin L, Feng X. Org. Lett. 2011; 13: 600
- 5f Chen L, Zhang L, Lv J, Cheng J, Luo S. Chem. Eur. J. 2012; 18: 8891
- 6a Zhang L, Chen L, Lv J, Cheng J.-P, Luo S. Chem. Asian J. 2012; 7: 2569
- 6b Alajarin M, Bonillo B, Marin-Luna M, Sanchez-Andrada P, Vidal A. Chem. Eur. J. 2013; 47: 16093
- 6c Murarka S, Deb I, Zhang C, Seidel D. J. Am. Chem. Soc. 2009; 131: 13226
- 6d Liu S, Qu J, Wang B. Chem. Commun. 2018; 54: 7928
- 6e Liu S, Zhang W, Qu J, Wang B. Org. Chem. Front. 2018; 5: 3008
- 7a Zhu S, Chen C, Xiao M, Yu L, Wang L, Xiao J. Green Chem. 2017; 19: 5653
- 7b Li S.-S, Lv X, Ren D, Shao C.-L, Liu Q, Xiao J. Chem. Sci. 2018; 9: 8253
- 7c Li S.-S, Zhou L, Wang L, Zhao H, Yu L, Xiao J. Org. Lett. 2018; 20: 138
- 7d Wang S, An X.-D, Li S.-S, Liu X, Liu Q, Xiao J. Chem. Commun. 2018; 54: 13833
- 7e Li S.-S, Zhu S, Chen C, Duan K, Liu Q, Xiao J. Org. Lett. 2019; 21: 1058
- 7f Lv X, Hu F, Duan K, Li S.-S, Liu Q, Xiao J. J. Org. Chem. 2019; 84: 1833
- 7g Zhu S, Chen C, Duan K, Sun Y.-M, Li S.-S, Liu Q, Xiao J. J. Org. Chem. 2019; 84: 8440
- 7h An XD, Duan K, Li X.-J, Yang J.-M, Lu Y.-N, Liu Q, Xiao J. J. Org. Chem. 2019; 84: 11839
- 7i Shen Y.-B, Li L.-F, Xiao M.-Y, Yang J.-M, Liu Q, Xiao J. J. Org. Chem. 2019; 84: 13935
- 7j Zhou L, Shen Y.-B, An X.-D, Li X.-J, Li S.-S, Liu Q, Xiao J. Org. Lett. 2019; 21: 8543
- 7k Wang S, Shen Y.-B, Li L.-F, Qiu B, Yu L, Liu Q, Xiao J. Org. Lett. 2019; 21: 8904
- 7l Shen Y.-B, Wang L.-X, Sun Y.-M, Dong F.-Y, Yu L, Liu Q, Xiao J. J. Org. Chem. 2020; 85: 1915
- 7m Duan K, Shi H, Wang L.-X, Li S.-S, Xu L, Xiao J. Org. Chem. Front. 2020; 7: 2511
- 7n Duan K, An X.-D, Li L.-F, Sun L.-L, Qiu B, Li X.-J, Xiao J. Org. Lett. 2020; 22: 2537
- 7o Zhou L, An X.-D, Yang S, Li X.-J, Shao C.-L, Liu Q, Xiao J. Org. Lett. 2020; 22: 776
- 8 Jessop PG. Green Chem. 2011; 13: 1391
- 9 Vadola PA, Carrera I, Sames D. J. Org. Chem. 2012; 77: 6689
- 10a Trost BM, Schroeder GM. J. Org. Chem. 2000; 65: 1569
- 10b Renard A, Lhomme J, Kotera M. J. Org. Chem. 2002; 67: 1302
- 10c Best D, Burns DJ, Lam HW. Angew. Chem. Int. Ed. 2015; 54: 7410
- 11 Zhao T, Zhang H, Cui L, Wang C, Qu J, Wang B. ChemistrySelect 2016; 1: 3713
- 12a Mori K, Sueoka S, Akiyama T. Chem. Lett. 2011; 40: 1386
- 12b Wang L, Xiao J. Org. Chem. Front. 2016; 3: 635
- 13a Bella M, Kobbelgaard S, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 3670
- 13b Kobbelgaard S, Bella M, Jørgensen KA. J. Org. Chem. 2006; 71: 4980
- 13c Kumar A, Yadav A, Verma A, Jana S, Sattar M, Kumar S, Prasad CD, Kumar S. Chem. Commun. 2014; 50: 9481
For reviews, see:
For representative examples, see:
For selected examples, see:
For selected examples, see: