Subscribe to RSS
DOI: 10.1055/s-0040-1721082
One-Pot Synthesis of Cycloparaphenylenes
Funding Information Financial support was provided by the Justus Liebig University Giessen.
Abstract
The preparation of cycloparaphenylenes ([n]CPPs) with their bent π-system poses a long-standing challenge in organic synthesis. In the current multi-step approaches to access CPPs, pre-angulated precursors were combined using transition metal-catalysed or mediated coupling reactions. Therefore, there is a long way to the realisation of the idea of an ‘ideal synthesis’. An easy and efficient synthesis of different [n]CPPs would represent a breakthrough, also pushing their incorporation into organic materials. By combining multiple steps in a one-pot approach, the overall time and workload can be drastically shortened. Herein, we present the application of this concept for the preparation of [6] and [9]CPP as a simple and fast alternative to current methods. By tuning the reaction conditions the selective synthesis of both [6] and [9]CPP was demonstrated.
Key words
cycloparaphenylenes - nanorings - organic synthesis - transition metal-free - carbon allotropes - macrocyclisationSupporting Information
Supporting information for this article is available online at http://doi.org/10.1055/s-0040-1721082.
Publication History
Received: 31 August 2020
Accepted: 29 September 2020
Article published online:
22 November 2020
© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Wender PA. Nat. Prod. Rep. 2014; 31: 433
- 2 Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR. J. Am. Chem. Soc. 2008; 130: 17646
- 3 Darzi ER, Jasti R. Chem. Soc. Rev. 2015; 44: 6401
- 4a Vögtle F. Topics in Current Chemistry, Vol. 115. Springer; Berlin: 1983
- 4b Friederich R, Nieger M, Vögtle F. Chem. Ber. 1993; 126: 1723
- 5a Kayahara E, Patel VK, Yamago S. J. Am. Chem. Soc. 2014; 136: 2284
- 5b Darzi ER, Sisto TJ, Jasti R. J. Org. Chem. 2012; 77: 6624
- 5c Evans P, Zakharov LN, Jasti R. J. Photochem. Photobiol., A 2019; 382: 111878
- 5d Evans PJ, Darzi ER, Jasti R. Nat. Chem. 2014; 6: 404
- 5e White BM, Zhao Y, Kawashima TE, Branchaud BP, Pluth MD, Jasti R. ACS Cent. Sci. 2018; 4: 1173
- 5f Della Sala P, Talotta C, de Rosa M, Soriente A, Geremia S, Hickey N, Neri P, Gaeta C. J. Org. Chem. 2019;
- 5g Xu Y, Wang B, Kaur R, Minameyer MB, Bothe M, Drewello T, Guldi DM, von Delius M. Angew. Chem. Int. Ed. 2018; 57: 11549
- 5h Van Raden JM, Leonhardt EJ, Zakharov LN, Pérez-Guardiola A, Pérez-Jiménez AJ, Marshall CR, Brozek CK, Sancho-García JC, Jasti R. J. Org. Chem. 2020; 85: 129
- 6 Xia J, Bacon JW, Jasti R. Chem. Sci. 2012; 3: 3018
- 7 Takaba H, Omachi H, Yamamoto Y, Bouffard J, Itami K. Angew. Chem. Int. Ed. 2009; 48: 6112
- 8a Segawa Y, Miyamoto S, Omachi H, Matsuura S, Šenel P, Sasamori T, Tokitoh N, Itami K. Angew. Chem. Int. Ed. 2011; 50: 3244
- 8b Segawa Y, Kuwabara T, Matsui K, Kawai S, Itami K. Tetrahedron 2015; 71: 4500
- 8c Omachi H, Segawa Y, Itami K. Acc. Chem. Res. 2012; 45: 1378
- 8d Omachi H, Matsuura S, Segawa Y, Itami K. Angew. Chem. Int. Ed. 2010; 49: 10202
- 9 Yamago S, Watanabe Y, Iwamoto T. Angew. Chem. Int. Ed. 2010; 49: 757
- 10 Iwamoto T, Watanabe Y, Sakamoto Y, Suzuki T, Yamago S. J. Am. Chem. Soc. 2011; 133: 8354
- 11 Tsuchido Y, Abe R, Ide T, Osakada K. Angew. Chem. Int. Ed. 2020;
- 12a Tran-Van A-F, Huxol E, Basler JM, Neuburger M, Adjizian J-J, Ewels CP, Wegner HA. Org. Lett. 2014; 16: 1594
- 12b Nishigaki S, Miyauchi Y, Noguchi K, Ito H, Itami K, Shibata Y, Tanaka K. Eur. J. Org. Chem. 2016; 4668
- 12c Nishigaki S, Shibata Y, Nakajima A, Okajima H, Masumoto Y, Osawa T, Muranaka A, Sugiyama H, Horikawa A, Uekusa H, Koshino H, Uchiyama M, Sakamoto A, Tanaka K. J. Am. Chem. Soc. 2019; 141: 14955
- 13a Li S, Huang C, Thakellapalli H, Farajidizaji B, Popp BV, Petersen JL, Wang KK. Org. Lett. 2016; 18: 2268
- 13b Farajidizaji B, Huang C, Thakellapalli H, Li S, Akhmedov NG, Popp BV, Petersen JL, Wang KK. J. Org. Chem. 2017; 82: 4458
- 13c Farajidizaji B, Thakellapalli H, Akhmedov NG, Wang KK. J. Org. Chem. 2018; 83: 1216
- 13d Huang C, Huang Y, Akhmedov NG, Popp BV, Petersen JL, Wang KK. Org. Lett. 2014; 16: 2672
- 14 Patel VK, Kayahara E, Yamago S. Chemistry 2015; 21: 5742
- 15 Kayahara E, Patel V, Xia J, Jasti R, Yamago S. Synlett 2015; 26: 1615
- 16 Kawanishi T, Ishida K, Kayahara E, Yamago S. J. Org. Chem. 2020; 85: 2082
- 17 Kayahara E, Sun L, Onishi H, Suzuki K, Fukushima T, Sawada A, Kaji H, Yamago S. J. Am. Chem. Soc. 2017; 139: 18480
- 18 To evaluate the commercial availability and reagent costs, following suppliers were checked: Merck (Sigma Aldrich), TCI, Fisher Scientific (including Alfa Aesar)
- 19 Sisto TJ, Golder MR, Hirst ES, Jasti R. J. Am. Chem. Soc. 2011; 133: 15800
- 20 Schaub TA, Margraf JT, Zakharov L, Reuter K, Jasti R. Angew. Chem. Int. Ed. 2018; 57: 16348
- 21 Golder MR, Jasti R. Acc. Chem. Res. 2015; 48: 557