CC BY-NC-ND 4.0 · Rev Bras Ortop (Sao Paulo) 2021; 56(01): 036-041
DOI: 10.1055/s-0040-1721368
Artigo Original
Asami

Finite Element Analysis of a Controlled Dynamization Device for External Circular Fixation

Article in several languages: português | English
1   Escola de Ciências da Vida, Departamento de Ciências da Saúde, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
,
1   Escola de Ciências da Vida, Departamento de Ciências da Saúde, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
,
2   Departamento de Ortopedia e Traumatologia, Hospital Universitário Cajuru, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
,
3   Programa de Pós-Graduação em Odontologia, Faculdade de Ciências da Vida, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
,
4   Programa de Pós-Graduação em Medicina, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
,
3   Programa de Pós-Graduação em Odontologia, Faculdade de Ciências da Vida, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
› Author Affiliations

Abstract

Objective To virtually prototype a device for external circular fixation of long bone fractures with controlled dynamization made of two different materials and predict their mechanical behavior by using the finite element analysis (FEA) method.

Method A software was used for 3D modeling two metal parts closely attached by a sliding dovetail joint and a high-density silicone damper. Distinctive FEAs were simulated by considering two different materials (stainless steel or titanium), modes (locked or dynamized) and loading conditions (static/point or dynamic/0.5 sec) with uniform 150 kg axial load on top of the device.

Results The finite elements (FEs) model presented 81,872 nodes and 45,922 elements. Considering stainless steel, the maximum stress peak (140.98 MPa) was reached with the device locked under static loading, while the greatest displacement (2.415 × 10−3 mm) was observed with the device locked and under dynamic loading. Regarding titanium, the device presented the maximum stress peak (141.45 MPa) under static loading and with the device locked, while the greatest displacement (3.975 × 10−3 mm) was found with the device locked and under dynamic loading.

Conclusion The prototyped device played the role of stress support with acceptable deformation in both locked and dynamized modes and may be fabricated with both stainless steel and titanium.



Publication History

Received: 31 January 2020

Accepted: 17 September 2020

Article published online:
19 February 2021

© 2021. Sociedade Brasileira de Ortopedia e Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • Referências

  • 1 Wolff J. Das Gesetz der Transformation der Knochen. Berlin: Hirschwald; 1892
  • 2 Perren S, Boitzy A. Cellular differentiation and bone biomechanics during the consolidation of a fracture. Clin Anat 1978; 1: 13-28
  • 3 Glatt V, Matthys R. Adjustable stiffness, external fixator for the rat femur osteotomy and segmental bone defect models. J Vis Exp 2014; 9 (92) e51558
  • 4 Compton J, Fragomen A, Rozbruch SR. Skeletal Repair in Distraction Osteogenesis: Mechanisms and Enhancements. JBJS Rev 2015; 3 (08) pii: 01874474–201508000–00002
  • 5 Henderson DJ, Rushbrook JL, Stewart TD, Harwood PJ. What Are the Biomechanical Effects of Half-pin and Fine-wire Configurations on Fracture Site Movement in Circular Frames?. Clin Orthop Relat Res 2016; 474 (04) 1041-1049
  • 6 Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec 1987; 219 (01) 1-9
  • 7 Lazo-Zbikowski J, Aguilar F, Mozo F, Gonzalez-Buendia R, Lazo JM. Biocompression external fixation. Sliding external osteosynthesis. Clin Orthop Relat Res 1986; (206) 169-184
  • 8 Marsh JL, Nepola JV, Wuest TK, Osteen D, Cox K, Oppenheim W. Unilateral external fixation until healing with the dynamic axial fixator for severe open tibial fractures. J Orthop Trauma 1991; 5 (03) 341-348
  • 9 Barquet A, Massaferro J, Dubra A, Milans C, Castiglioni O. The dynamic ASIF-BM tubular external fixator in the treatment of open fractures of the shaft of the tibia. Injury 1992; 23 (07) 461-466
  • 10 Foxworthy M, Pringle RM. Dynamization timing and its effect on bone healing when using the Orthofix Dynamic Axial Fixator. Injury 1995; 26 (02) 117-119
  • 11 Moss DP, Tejwani NC. Biomechanics of external fixation: a review of the literature. Bull NYU Hosp Jt Dis 2007; 65 (04) 294-299
  • 12 Fragomen AT, Rozbruch SR. The mechanics of external fixation. HSS J 2007; 3 (01) 13-29
  • 13 Roseiro LM, Neto MA, Amaro A, Leal RP, Samarra MC. External fixator configurations in tibia fractures: 1D optimization and 3D analysis comparison. Comput Methods Programs Biomed 2014; 113 (01) 360-370
  • 14 Lotti RS, Machado AW, Mazzieiro ET, Landre Júnior J. Scientific application of finite elemento method. Rev Dent Press Ortodon Ortop Facial 2006; 11: 35-43
  • 15 Easley SK, Pal S, Tomaszewski PR, Petrella AJ, Rullkoetter PJ, Laz PJ. Finite element-based probabilistic analysis tool for orthopaedic applications. Comput Methods Programs Biomed 2007; 85 (01) 32-40
  • 16 Kluess D, Souffrant R, Mittelmeier W, Wree A, Schmitz KP, Bader R. A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: modeling and experimental validation. Comput Methods Programs Biomed 2009; 95 (01) 23-30
  • 17 Burgers PT, Van Riel MP, Vogels LM, Stam R, Patka P, Van Lieshout EM. Rigidity of unilateral external fixators--a biomechanical study. Injury 2011; 42 (12) 1449-1454
  • 18 Gao Y, Jin Z, Wang L, Wang M. Finite element analysis of sliding distance and contact mechanics of hip implant under dynamic walking conditions. Proc Inst Mech Eng H 2015; 229 (06) 469-474
  • 19 Pan M, Chai L, Xue F, Ding L, Tang G, Lv B. Comparisons of external fixator combined with limited internal fixation and open reduction and internal fixation for Sanders type 2 calcaneal fractures: Finite element analysis and clinical outcome. Bone Joint Res 2017; 6 (07) 433-438