Digestive Disease Interventions 2020; 04(04): 358-364
DOI: 10.1055/s-0040-1721453
Review Article

Combination Therapies with Ablation: Immunoablation

1   Division of Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Hospital, Baltimore, Maryland
,
2   Department of Interventional Radiology, Guy's & St. Thomas Hospital, London, United Kingdom
,
1   Division of Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Hospital, Baltimore, Maryland
› Institutsangaben
Funding This study was not supported by any funding.

Abstract

Percutaneous ablation has been increasingly utilized as an alternative or adjunct to surgical resection of solid tumors. However, high rates of local recurrence and disease progression both with resection and ablation, particularly in patients with primary and metastatic liver malignancies, have limited further extension of overall survival. Systemic oncology treatment has progressed beyond traditional chemotherapeutic agents to immunotherapeutic agents that exert their effect by enhancing the body's immune response against cancer cells. The induction of necrotic cell death and the release of a large number of tumor antigens as a result of ablation have stimulated interest in combination therapy as a potential method of improving response to immunotherapy. This review focuses on the current scientific evidence for combination therapy of immuno-oncologic agents and locoregional ablation techniques.



Publikationsverlauf

Eingereicht: 09. Juli 2020

Angenommen: 24. August 2020

Artikel online veröffentlicht:
19. November 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100 (01) 57-70
  • 2 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144 (05) 646-674
  • 3 Minami Y, Nishida N, Kudo M. Radiofrequency ablation of liver metastasis: potential impact on immune checkpoint inhibitor therapy. Eur Radiol 2019; 29 (09) 5045-5051
  • 4 Dempke WCM, Fenchel K, Uciechowski P, Dale SP. Second- and third-generation drugs for immuno-oncology treatment—the more the better?. Eur J Cancer 2017; 74: 55-72
  • 5 Kim HS, Chapiro J, Geschwind JH. From the guest editor: interventional oncology: the fourth pillar of oncology. Cancer J 2016; 22 (06) 363-364
  • 6 Shady W, Petre EN, Gonen M. et al. Percutaneous radiofrequency ablation of colorectal cancer liver metastases: factors affecting outcomes—a 10-year experience at a single center. Radiology 2016; 278 (02) 601-611
  • 7 Gazelle GS, Goldberg SN, Solbiati L, Livraghi T. Tumor ablation with radio-frequency energy. Radiology 2000; 217 (03) 633-646
  • 8 Knavel EM, Brace CL. Tumor ablation: common modalities and general practices. Tech Vasc Interv Radiol 2013; 16 (04) 192-200
  • 9 Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: principles and applications. Radiographics 2005; 25 (Suppl. 01) S69-S83
  • 10 Liang P, Yu J, Lu MD. et al. Practice guidelines for ultrasound-guided percutaneous microwave ablation for hepatic malignancy. World J Gastroenterol 2013; 19 (33) 5430-5438
  • 11 Revel-Mouroz P, Otal P, Jaffro M. et al. Other non-surgical treatments for liver cancer. Rep Pract Oncol Radiother 2017; 22 (02) 181-192
  • 12 Breen DJ, Lencioni R. Image-guided ablation of primary liver and renal tumours. Nat Rev Clin Oncol 2015; 12 (03) 175-186
  • 13 Erinjeri JP, Clark TW. Cryoablation: mechanism of action and devices. J Vasc Interv Radiol 2010; 21 (Suppl. 08) S187-S191
  • 14 Hoffmann NE, Bischof JC. The cryobiology of cryosurgical injury. Urology 2002; 60 (02) (Suppl. 01) 40-49
  • 15 Cryosurgery B. Cryosurgery. Annu Rev Biomed Eng 2000; 2: 157-187
  • 16 Hickey RM, Kulik LM, Nimeiri H. et al. Immuno-oncology and its opportunities for interventional radiologists: immune checkpoint inhibition and potential synergies with interventional oncology procedures. J Vasc Interv Radiol 2017; 28 (11) 1487-1494
  • 17 Erinjeri JP, Fine GC, Adema GJ. et al. Immunotherapy and the interventional oncologist: challenges and opportunities—a society of interventional oncology white paper. Radiology 2019; 292 (01) 25-34
  • 18 Shi L, Chen L, Wu C. et al. PD-1 blockade boosts radiofrequency ablation-elicited adaptive immune responses against tumor. Clin Cancer Res 2016; 22 (05) 1173-1184
  • 19 Shen S, Peng H, Wang Y. et al. Screening for immune-potentiating antigens from hepatocellular carcinoma patients after radiofrequency ablation by serum proteomic analysis. BMC Cancer 2018; 18 (01) 117
  • 20 Cao M, Cabrera R, Xu Y. et al. Hepatocellular carcinoma cell supernatants increase expansion and function of CD4(+)CD25(+) regulatory T cells. Lab Invest 2007; 87 (06) 582-590
  • 21 Yang ZQ, Yang ZY, Zhang LD. et al. Increased liver-infiltrating CD8+FoxP3+ regulatory T cells are associated with tumor stage in hepatocellular carcinoma patients. Hum Immunol 2010; 71 (12) 1180-1186
  • 22 Shen X, Li N, Li H, Zhang T, Wang F, Li Q. Increased prevalence of regulatory T cells in the tumor microenvironment and its correlation with TNM stage of hepatocellular carcinoma. J Cancer Res Clin Oncol 2010; 136 (11) 1745-1754
  • 23 Takaki H, Imai N, Thomas CT. et al. Changes in peripheral blood T-cell balance after percutaneous tumor ablation. Minim Invasive Ther Allied Technol 2017; 26 (06) 331-337
  • 24 Zerbini A, Pilli M, Laccabue D. et al. Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response. Gastroenterology 2010; 138 (05) 1931-1942
  • 25 Dan J, Zhang Y, Peng Z. et al. Postoperative neutrophil-to-lymphocyte ratio change predicts survival of patients with small hepatocellular carcinoma undergoing radiofrequency ablation. PLoS One 2013; 8 (03) e58184
  • 26 Facciorusso A, Del Prete V, Crucinio N, Serviddio G, Vendemiale G, Muscatiello N. Lymphocyte-to-monocyte ratio predicts survival after radiofrequency ablation for colorectal liver metastases. World J Gastroenterol 2016; 22 (16) 4211-4218
  • 27 Nakayama J, Kokuba H, Kobayashi J, Yoshida Y, Hori Y. Experimental approaches for the treatment of murine B16 melanomas of various sizes. I: local injection of ethanol with a combination of interleukin-2 or microwaval hyperthermia for B16 melanomas with a size of less than 7 mm in diameter. J Dermatol Sci 1997; 15 (02) 75-81
  • 28 Dong B, Zhang J, Liang P. et al. Influencing factors of local immunocyte infiltration in hepatocellular carcinoma tissues pre- and post-percutaneous microwave coagulation therapy. Zhonghua Yi Xue Za Zhi 2002; 82 (06) 393-397
  • 29 Dong BW, Zhang J, Liang P. et al. Sequential pathological and immunologic analysis of percutaneous microwave coagulation therapy of hepatocellular carcinoma. Int J Hyperthermia 2003; 19 (02) 119-133
  • 30 Jansen MC, van Hillegersberg R, Schoots IG. et al. Cryoablation induces greater inflammatory and coagulative responses than radiofrequency ablation or laser induced thermotherapy in a rat liver model. Surgery 2010; 147 (05) 686-695
  • 31 Ahmad F, Gravante G, Bhardwaj N. et al. Changes in interleukin-1β and 6 after hepatic microwave tissue ablation compared with radiofrequency, cryotherapy and surgical resections. Am J Surg 2010; 200 (04) 500-506
  • 32 Seifert JK, France MP, Zhao J. et al. Large volume hepatic freezing: association with significant release of the cytokines interleukin-6 and tumor necrosis factor a in a rat model. World J Surg 2002; 26 (11) 1333-1341
  • 33 Wudel Jr LJ, Allos TM, Washington MK, Sheller JR, Chapman WC. Multi-organ inflammation after hepatic cryoablation in BALB/c mice. J Surg Res 2003; 112 (02) 131-137
  • 34 Obara K, Matsumoto N, Okamoto M. et al. Insufficient radiofrequency ablation therapy may induce further malignant transformation of hepatocellular carcinoma. Hepatol Int 2008; 2 (01) 116-123
  • 35 Yoshida S, Kornek M, Ikenaga N. et al. Sublethal heat treatment promotes epithelial-mesenchymal transition and enhances the malignant potential of hepatocellular carcinoma. Hepatology 2013; 58 (05) 1667-1680
  • 36 Yoshida N, Midorikawa Y, Kajiwara T. et al. Hepatocellular carcinoma with sarcomatoid change without anticancer therapies. Case Rep Gastroenterol 2013; 7 (01) 169-174
  • 37 Yilmaz KB, Dogan L, Nalbant H. et al. Comparing scalpel, electrocautery and ultrasonic dissector effects: the impact on wound complications and pro-inflammatory cytokine levels in wound fluid from mastectomy patients. J Breast Cancer 2011; 14 (01) 58-63
  • 38 Tanis E, Nordlinger B, Mauer M. et al. Local recurrence rates after radiofrequency ablation or resection of colorectal liver metastases. Analysis of the European Organisation for Research and Treatment of Cancer #40004 and #40983. Eur J Cancer 2014; 50 (05) 912-919
  • 39 Lee DH, Lee JM, Lee JY, Kim SH, Han JK, Choi BI. Radiofrequency ablation for intrahepatic recurrent hepatocellular carcinoma: long-term results and prognostic factors in 168 patients with cirrhosis. Cardiovasc Intervent Radiol 2014; 37 (03) 705-715
  • 40 Lencioni R, Cioni D, Crocetti L. et al. Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. Radiology 2005; 234 (03) 961-967
  • 41 N'Kontchou G, Mahamoudi A, Aout M. et al. Radiofrequency ablation of hepatocellular carcinoma: long-term results and prognostic factors in 235 Western patients with cirrhosis. Hepatology 2009; 50 (05) 1475-1483
  • 42 Kolarich AR, Cabrera R, Hughes SJ, George Jr TJ, Geller BS, Grajo JR. Thermal ablation versus wedge or segmental resection in patients with early stage hepatocellular carcinoma: a population survival analysis. HPB (Oxford) 2019; 21 (02) 249-257
  • 43 Wang Y, Luo Q, Li Y, Deng S, Wei S, Li X. Radiofrequency ablation versus hepatic resection for small hepatocellular carcinomas: a meta-analysis of randomized and nonrandomized controlled trials. PLoS One 2014; 9 (01) e84484
  • 44 Zhan C, Ruohoniemi D, Shanbhogue KP. et al. Safety of combined Yttrium-90 radioembolization and immune checkpoint inhibitor immunotherapy for hepatocellular carcinoma. J Vasc Interv Radiol 2020; 31 (01) 25-34
  • 45 Feng K, Yan J, Li X. et al. A randomized controlled trial of radiofrequency ablation and surgical resection in the treatment of small hepatocellular carcinoma. J Hepatol 2012; 57 (04) 794-802
  • 46 Majumdar A, Roccarina D, Thorburn D, Davidson BR, Tsochatzis E, Gurusamy KS. Management of people with early- or very early-stage hepatocellular carcinoma: an attempted network meta-analysis. Cochrane Database Syst Rev 2017; 3: CD011650
  • 47 Bruix J, Sherman M. American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology 2011; 53 (03) 1020-1022
  • 48 Heimbach JK, Kulik LM, Finn RS. et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018; 67 (01) 358-380
  • 49 European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu, European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2018; 69 (01) 182-236
  • 50 El-Khoueiry AB, Sangro B, Yau T. et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017; 389 (10088): 2492-2502
  • 51 U.S. National Library of Medicine. Safety and efficacy of pembrolizumab (MK-3475) versus placebo as adjuvant therapy in participants with hepatocellular carcinoma HCC) and complete radiological response after surgical resection or local ablation (MK-3475–937 KEYNOTE-937). Available at: July 1, 2020. https://ClinicalTrials.gov/show/NCT03867084
  • 52 Duffy AG, Ulahannan SV, Makorova-Rusher O. et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol 2017; 66 (03) 545-551
  • 53 Izzo F, Granata V, Grassi R. et al. Radiofrequency ablation and microwave ablation in liver tumors: an update. Oncologist 2019; 24 (10) e990-e1005
  • 54 McCarter MD, Fong Y. Metastatic liver tumors. Semin Surg Oncol 2000; 19 (02) 177-188
  • 55 van Duijnhoven FH, Jansen MC, Junggeburt JM. et al. Factors influencing the local failure rate of radiofrequency ablation of colorectal liver metastases. Ann Surg Oncol 2006; 13 (05) 651-658
  • 56 Kim SK, Rhim H, Kim YS. et al. Radiofrequency thermal ablation of hepatic tumors: pitfalls and challenges. Abdom Imaging 2005; 30 (06) 727-733
  • 57 Solbiati L, Ahmed M, Cova L, Ierace T, Brioschi M, Goldberg SN. Small liver colorectal metastases treated with percutaneous radiofrequency ablation: local response rate and long-term survival with up to 10-year follow-up. Radiology 2012; 265 (03) 958-968
  • 58 Minami Y, Kudo M. Radiofrequency ablation of liver metastases from colorectal cancer: a literature review. Gut Liver 2013; 7 (01) 1-6
  • 59 Sofocleous CT, Nascimento RG, Gonen M. et al. Radiofrequency ablation in the management of liver metastases from breast cancer. AJR Am J Roentgenol 2007; 189 (04) 883-889
  • 60 Bengmark S, Hafström L. The natural history of primary and secondary malignant tumors of the liver. I. The prognosis for patients with hepatic metastases from colonic and rectal carcinoma by laparotomy. Cancer 1969; 23 (01) 198-202
  • 61 Norstein J, Silen W. Natural history of liver metastases from colorectal carcinoma. J Gastrointest Surg 1997; 1 (05) 398-407
  • 62 Van Cutsem E, Köhne CH, Hitre E. et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009; 360 (14) 1408-1417
  • 63 Hurwitz H, Fehrenbacher L, Novotny W. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350 (23) 2335-2342
  • 64 Ruers T, Punt C, Van Coevorden F. et al; EORTC Gastro-Intestinal Tract Cancer Group, Arbeitsgruppe Lebermetastasen und—tumoren in der Chirurgischen Arbeitsgemeinschaft Onkologie (ALM-CAO) and the National Cancer Research Institute Colorectal Clinical Study Group (NCRI CCSG). Radiofrequency ablation combined with systemic treatment versus systemic treatment alone in patients with non-resectable colorectal liver metastases: a randomized EORTC Intergroup phase II study (EORTC 40004). Ann Oncol 2012; 23 (10) 2619-2626
  • 65 Rozeman EA, Prevoo W, Meier MAJ. et al. Phase Ib/II trial testing combined radiofrequency ablation and ipilimumab in uveal melanoma (SECIRA-UM). Melanoma Res 2020; 30 (03) 252-260
  • 66 Zimmer L, Vaubel J, Mohr P. et al. Phase II DeCOG-study of ipilimumab in pretreated and treatment-naïve patients with metastatic uveal melanoma. PLoS One 2015; 10 (03) e0118564
  • 67 Maio M, Danielli R, Chiarion-Sileni V. et al. Efficacy and safety of ipilimumab in patients with pre-treated, uveal melanoma. Ann Oncol 2013; 24 (11) 2911-2915
  • 68 den Brok MH, Sutmuller RP, van der Voort R. et al. In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res 2004; 64 (11) 4024-4029
  • 69 den Brok MH, Sutmuller RP, Nierkens S. et al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer 2006; 95 (07) 896-905
  • 70 Takahashi EA, Kinsman KA, Schmit GD. et al. Thermal ablation of intrahepatic cholangiocarcinoma: safety, efficacy, and factors affecting local tumor progression. Abdom Radiol (NY) 2018; 43 (12) 3487-3492
  • 71 Kolarich AR, Shah JL, George Jr TJ. et al. Non-surgical management of patients with intrahepatic cholangiocarcinoma in the United States, 2004-2015: an NCDB analysis. J Gastrointest Oncol 2018; 9 (03) 536-545
  • 72 Reccia I, Kumar J, Habib N, Sodergren M. The use of radiofrequency ablation in pancreatic cancer in the midst of the dawn of immuno-oncology. Med Oncol 2018; 35 (12) 151
  • 73 Rashid MF, Hecht EM, Steinman JA, Kluger MD. Irreversible electroporation of pancreatic adenocarcinoma: a primer for the radiologist. Abdom Radiol (NY) 2018; 43 (02) 457-466
  • 74 Cucchetti A, Piscaglia F, Cescon M. et al. Cost-effectiveness of hepatic resection versus percutaneous radiofrequency ablation for early hepatocellular carcinoma. J Hepatol 2013; 59 (02) 300-307
  • 75 Gazelle GS, McMahon PM, Beinfeld MT, Halpern EF, Weinstein MC. Metastatic colorectal carcinoma: cost-effectiveness of percutaneous radiofrequency ablation versus that of hepatic resection. Radiology 2004; 233 (03) 729-739
  • 76 Prasad V, De Jesús K, Mailankody S. The high price of anticancer drugs: origins, implications, barriers, solutions. Nat Rev Clin Oncol 2017; 14 (06) 381-390
  • 77 Sherman SK, Lange JJ, Dahdaleh FS. et al. Cost-effectiveness of maintenance capecitabine and bevacizumab for metastatic colorectal cancer. JAMA Oncol 2019; 5 (02) 236-242
  • 78 Franchi M, Garau D, Kirchmayer U. et al. Effectiveness and costs associated to adding cetuximab or bevacizumab to chemotherapy as initial treatment in metastatic colorectal cancer: results from the observational FABIO project. Cancers (Basel) 2020; 12 (04) E839