RSS-Feed abonnieren
DOI: 10.1055/s-0040-1722686
Specific Cognitive Changes due to Hippocalcin Alterations? A Novel Familial Homozygous Hippocalcin Variant Associated with Inherited Dystonia and Altered Cognition
Funding M.F. reports personal fees from Novartis outside the submitted work. T.P. reports grants from Austrian Childhood Cancer Organization, Austrian Childhood Cancer Organization-Parents' Initiative, Gemeinsame Gesundheitsziele aus dem Rahmen-Pharmavertrag, NF-Kinder, Occursus, and 42virtual outside the submitted work. W.M.S. reports personal fees from AveXis Inc. and PTC Therapeutics Inc. outside the submitted work.
Abstract
Background Recent research suggested an hippocalcin (HPCA)-related form of DYT2-like autosomal recessive dystonia. Two reports highlight a broad spectrum of the clinical phenotype. Here, we describe a novel HPCA gene variant in a pediatric patient and two affected relatives.
Methods Whole exome sequencing was applied after a thorough clinical and neurological examination of the index patient and her family members. Results of neuropsychological testing were analyzed.
Results Whole exome sequencing revealed a novel homozygous missense variant in the HPCA gene [c.182C>T p.(Ala61Val)] in our pediatric patient and the two affected family members. Clinically, the cases presented with dystonia, dysarthria, and jerky movements. We observed a particular cognitive profile with executive dysfunctions in our patient, which corresponds to the cognitive deficits that have been observed in the patients previously described.
Conclusion We present a novel genetic variant of the HPCA gene associated with autosomal recessive dystonia in a child with childhood-onset dystonia supporting its clinical features. Furthermore, we propose specific HPCA-related cognitive changes in homozygous carriers, underlining the importance of undertaking a systematic assessment of cognition in HPCA-related dystonia.
Publikationsverlauf
Eingereicht: 08. Juli 2020
Angenommen: 23. Oktober 2020
Artikel online veröffentlicht:
28. Januar 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Albanese A, Bhatia K, Bressman SB. et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord 2013; 28 (07) 863-873
- 2 Klein C, Lohmann K, Marras C. et al. Hereditary Dystonia Overview. In: Adam MP, Ardinger HH, Pagon RA. et al., eds. GeneReviews® [Internet]. Seattle, WA: University of Washington, Seattle; 1993-2020 ; 2003
- 3 Charlesworth G, Angelova PR, Bartolomé-Robledo F. et al. Mutations in HPCA cause autosomal-recessive primary isolated dystonia. Am J Hum Genet 2015; 96 (04) 657-665
- 4 Mercer EA, Korhonen L, Skoglösa Y, Olsson PA, Kukkonen JP, Lindholm D. NAIP interacts with hippocalcin and protects neurons against calcium-induced cell death through caspase-3-dependent and -independent pathways. EMBO J 2000; 19 (14) 3597-3607
- 5 Paterlini M, Revilla V, Grant AL, Wisden W. Expression of the neuronal calcium sensor protein family in the rat brain. Neuroscience 2000; 99 (02) 205-216
- 6 Burgoyne RD, O'Callaghan DW, Hasdemir B, Haynes LP, Tepikin AV. Neuronal Ca2+-sensor proteins: multitalented regulators of neuronal function. Trends Neurosci 2004; 27 (04) 203-209
- 7 Burgoyne RD. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 2007; 8 (03) 182-193
- 8 Helassa N, Antonyuk SV, Lian LY, Haynes LP, Burgoyne RD. Biophysical and functional characterization of hippocalcin mutants responsible for human dystonia. Hum Mol Genet 2017; 26 (13) 2426-2435
- 9 Palmer CL, Lim W, Hastie PG. et al. Hippocalcin functions as a calcium sensor in hippocampal LTD. Neuron 2005; 47 (04) 487-494
- 10 Atasu B, Hanagasi H, Bilgic B. et al. HPCA confirmed as a genetic cause of DYT2-like dystonia phenotype. Mov Disord 2018; 33 (08) 1354-1358
- 11 Balint B, Charlesworth G, Erro R, Wood NW, Bhatia KP. Delineating the phenotype of autosomal-recessive HPCA mutations: not only isolated dystonia!. Mov Disord 2019; 34 (04) 589-592
- 12 Kobayashi M, Masaki T, Hori K. et al. Hippocalcin-deficient mice display a defect in cAMP response element-binding protein activation associated with impaired spatial and associative memory. Neuroscience 2005; 133 (02) 471-484
- 13 Petermann F. Wechsler Adult Intelligence Scale. 4th edition.. (WAIS-IV). German adaptation of the WAIS-IV by D. Wechsler. Frankfurt, Germany: Pearson Assessment; 2012
- 14 Schuhfried G. Vienna Test System: Psychological Assessment. Moedling, Austria: Schuhfried; 2013
- 15 Kongs SK, Thompson LL, Iverson GL, Heaton RK. The Wisconsin Card Sorting Test - 64 Card Version. Lutz FL: Psychological Assessment Resources; 2000
- 16 Aschenbrenner S, Tucha O, Lange KW. Regensburger Wortflüssigkeits-Test (RWT). Göttingen: Hogrefe Verlag für Psychologie; 2000
- 17 Zimmermann P, Fimm B. TAP 2.3.1. Testbatterie zur Aufmerksamkeits-prüfung Version 2.3.1. Herzogenrath: Vera Fimm, Psychologische Testsysteme; 2017
- 18 Helmstaedter C, Lendt M, Lux S. Verbaler Lern- und Merkfähigkeitstest: VLMT, Manual. Weinheim: Beltz-Test; 2001
- 19 Stiensmeier-Pelster J, Schürmann M, Duda K. Depressions-Inventar für Kinder und Jugendliche (DIKJ). Handanweisung (2., überarb. u. neunorm. Aufl.). Göttingen: Hogrefe; 2000
- 20 Döpfner M, Goertz-Dorten A. DISYPS-III: Diagnostik-System für psychische Störungen im Kindes- und Jugendalter nach ICD-10 und DSM 5 [DISYPS-III: Diagnostic system for psychiatric disorders in children and adolescents]. Göttingen, Germany: Hogrefe; 2017
- 21 Rosenstein L. Research Design and Analysis: A Primer for the Non-Statistician. 2019: 94
- 22 Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 2014; 11 (04) 361-362
- 23 Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014; 46 (03) 310-315
- 24 Grogan A, Green DW, Ali N, Crinion JT, Price CJ. Structural correlates of semantic and phonemic fluency ability in first and second languages. Cereb Cortex 2009; 19 (11) 2690-2698
- 25 Sheldon S, Moscovitch M. The nature and time-course of medial temporal lobe contributions to semantic retrieval: an fMRI study on verbal fluency. Hippocampus 2012; 22 (06) 1451-1466
- 26 Whitney C, Weis S, Krings T, Huber W, Grossman M, Kircher T. Task-dependent modulations of prefrontal and hippocampal activity during intrinsic word production. J Cogn Neurosci 2009; 21 (04) 697-712
- 27 Jahanshahi M, Torkamani M. The cognitive features of idiopathic and DYT1 dystonia. Mov Disord 2017; 32 (10) 1348-1355
- 28 Holtzer R, Goldin Y, Donovick PJ. Extending the administration time of the letter fluency test increases sensitivity to cognitive status in aging. Exp Aging Res 2009; 35 (03) 317-326
- 29 Fischer-Baum S, Miozzo M, Laiacona M, Capitani E. Perseveration during verbal fluency in traumatic brain injury reflects impairments in working memory. Neuropsychology 2016; 30 (07) 791-799
- 30 Marsh JE, Hansson P, Sörman DE, Ljungberg JK. Executive processes underpin the bilingual advantage on phonemic fluency: evidence from analyses of switching and clustering. Front Psychol 2019; 10: 1355
- 31 Schwering SC, MacDonald MC. Verbal working memory as emergent from language comprehension and production. Front Hum Neurosci 2020; 14: 68