Subscribe to RSS
DOI: 10.1055/s-0040-1722698
Controlled Ring-Opening Polymerization of O-Carboxyanhydrides to Synthesize Functionalized Poly(α-Hydroxy Acids)
Funding Information This work was supported by start-up funding from Virginia Tech, American Chemical Society Petroleum Research Fund (57926-DNI-7), and the National Science Foundation (CHE-1807911).
Abstract
Poly(α-hydroxy acids), as a family of biodegradable polyesters, are valuable materials due to their broad applications in packaging, agriculture, and biomedical engineering. Herein we highlight and explore recent advances of catalysts in controlled ring-opening polymerization of O-carboxyanhydrides towards functionalized poly(α-hydroxy acids), especially metal catalyst-mediated controlled polymerization. Limitations of current polymerization strategies of O-carboxyanhydrides are discussed.
-
Introduction
-
Organocatalysts for O-Carboxyanhydride Polymerization
-
Metal Catalysts for O-Carboxyanhydride Polymerization
-
Stereoselective and Stereosequence-Controlled Polymerization of O-Carboxyanhydrides
-
Conclusions and Outlook
Key words
polyesters - O-carboxyanhydrides - ring-opening polymerization - poly(α-hydroxy acids) - stereoselective polymerization - electrochemical polymerization# These authors contributed equally.
Publication History
Received: 01 December 2020
Accepted: 21 December 2020
Article published online:
25 January 2021
© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Rochman CM, Browne MA, Halpern BS, Hentschel BT, Hoh E, Karapanagioti HK, Rios-Mendoza LM, Takada H, Teh S, Thompson RC. Nature 2013; 494: 169
- 2 Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL. Science 2015; 347: 768
- 3 Wilcox C, Van Sebille E, Hardesty BD. Proc. Natl. Acad. Sci. U.S.A 2015; 112: 11899
- 4 Ryan PG, Moloney CL. Nature 1993; 361: 23
- 5 Tang X, Chen EY. X. Chem 2019; 5: 284
- 6 Commission E. A European strategy for plastics in a circular economy. http://ec.europa.eu/environment/circular-economy/pdf/plastics-strategy-brochure.pdf (accessed December 30, 2020)
- 7 Foundation EM. The new plastics economy: rethinking the future of plastics & catalysing action. https://www.ellenmacarthurfoundation.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics-catalysing-action (accessed December 30, 2020)
- 8 Yin Q, Yin L, Wang H, Cheng J. Acc. Chem. Res. 2015; 48: 1777
- 9 Gilding D, Reed A. Polymer 1979; 20: 1459
- 10 Yamamoto H, Kuno Y, Sugimoto S, Takeuchi H, Kawashima Y. J. Controlled Release 2005; 102: 373
- 11 Ajioka M, Enomoto K, Suzuki K, Yamaguchi A. J. Environ. Polym. Degrad. 1995; 3: 225
- 12 Cohen-Arazi N, Domb AJ, Katzhendler J. Polymers 2010; 2: 418
- 13 Lu Y, Yin L, Zhang Y, Zhonghai Z, Xu Y, Tong R, Cheng J. ACS Macro Lett. 2012; 1: 441
- 14 Li H, Shakaroun RM, Guillaume SM, Carpentier JF. Chem. Eur. J. 2020; 26: 128
- 15 Yin M, Baker GL. Macromolecules 1999; 32: 7711
- 16 Jing F, Smith MR, Baker GL. Macromolecules 2007; 40: 9304
- 17 Baker GL, Vogel EB, Smith MR. Polym. Rev. 2008; 48: 64
- 18 Liu T, Simmons TL, Bohnsack DA, Mackay ME, Smith MR, Baker GL. Macromolecules 2007; 40: 6040
- 19 Simmons TL, Baker GL. Biomacromolecules 2001; 2: 658
- 20 Yu Y, Zou J, Cheng C. Polym. Chem. 2014; 5: 5854
- 21 Tong R. Ind. Eng. Chem. Res. 2017; 56: 4207
- 22 Martin RT, Camargo LP, Miller SA. Green Chem. 2014; 16: 1768
- 23 Cairns SA, Schultheiss A, Shaver MP. Polym. Chem. 2017; 8: 2990
- 24 Xu Y, Perry MR, Cairns SA, Shaver MP. Polym. Chem. 2019; 10: 3048
- 25 Martin Vaca B, Bourissou D. ACS Macro Lett. 2015; 4: 792
- 26 du Boullay OT, Marchal E, Martin-Vaca B, Cossio FP, Bourissou D. J. Am. Chem. Soc. 2006; 128: 16442
- 27 Zhong Y, Tong R. Front. Chem. 2018; 6: 641
- 28 Feng Q, Zhong Y, Xie L, Tong R. Synlett 2017; 28: 1857
- 29 Smith IJ, Tighe BJ. J. Polym. Sci., Part A: Polym. Chem. 1976; 14: 949
- 30 Pounder RJ, Dove AP. Polym. Chem. 2010; 1: 260
- 31 Basu A, Kunduru KR, Katzhendler J, Domb AJ. Adv. Drug Delivery Rev. 2016; 107: 82
- 32 du Boullay OT, Bonduelle C, Martin-Vaca B, Bourissou D. Chem. Commun. 2008; 1786
- 33 Cotarca L, Geller T, Répási J. Org. Process Res. Dev. 2017; 21: 1439
- 34 Sun Y, Jia Z, Chen C, Cong Y, Mao X, Wu J. J. Am. Chem. Soc. 2017; 139: 10723
- 35 Li M, Tao Y, Tang J, Wang Y, Zhang X, Tao Y, Wang X. J. Am. Chem. Soc. 2019; 141: 281
- 36 Kricheldorf H, Jonté JM. Polym. Bull. 1983; 9: 276
- 37 Vandenbossche CP, de Croos P, Singh SP, Bakale RP, Wagler TR. Org. Process Res. Dev. 2010; 14: 921
- 38 Chen X, Lai H, Xiao C, Tian H, Chen X, Tao Y, Wang X. Polym. Chem. 2014; 5: 6495
- 39 Zhang Z, Yin L, Xu Y, Tong R, Lu Y, Ren J, Cheng J. Biomacromolecules 2012; 13: 3456
- 40 Wang H, Tang L, Tu C, Song Z, Yin Q, Yin L, Zhang Z, Cheng J. Biomacromolecules 2013; 14: 3706
- 41 Gerhardt WW, Noga DE, Hardcastle KI, García AJ, Collard DM, Weck M. Biomacromolecules 2006; 7: 1735
- 42 Kalelkar PP, Alas GR, Collard DM. Macromolecules 2016; 49: 2609
- 43 Bonduelle C, Martín-Vaca B, Cossío FP, Bourissou D. Chem. Eur. J. 2008; 14: 5304
- 44 Pounder RJ, Fox DJ, Barker IA, Bennison MJ, Dove AP. Polym. Chem. 2011; 2: 2204
- 45 Wang RB, Zhang JW, Yin Q, Xu YX, Cheng JJ, Tong R. Angew. Chem. Int. Ed. 2016; 55: 13010
- 46 Gazzotti S, Todisco SA, Picozzi C, Ortenzi MA, Farina H, Lesma G, Silvani A. Eur. Polym. J. 2019; 114: 369
- 47 Buchard A, Carbery DR, Davidson MG, Ivanova PK, Jeffery BJ, Kociok-Köhn GI, Lowe JP. Angew. Chem. Int. Ed. 2014; 53: 13858
- 48 Xia H, Kan S, Li Z, Chen J, Cui S, Wu W, Ouyang P, Guo K. J. Polym. Sci., Part A: Polym. Chem. 2014; 52: 2306
- 49 Bonduelle C, Martin-Vaca B, Bourissou D. Biomacromolecules 2009; 10: 3069
- 50 Hong M, Chen EY. X. Nat. Chem. 2016; 8: 42
- 51 Brown HA, Waymouth RM. Acc. Chem. Res. 2013; 46: 2585
- 52 Liang J, Yin T, Han S, Yang J. Polym. Chem. 2020
- 53 Stanford MJ, Dove AP. Chem. Soc. Rev. 2010; 39: 486
- 54 Longo JM, Sanford MJ, Coates GW. Chem. Rev. 2016; 116: 15167
- 55 Zhuang XL, Yu HY, Tang ZH, Oyaizu K, Nishide H, Chen XS. Chin. J. Polym. Sci. 2011; 29: 197
- 56 He Z, Jiang L, Chuan Y, Li H, Yuan M. Molecules 2013; 18: 12768
- 57 Jia F, Chen X, Zheng Y, Qin Y, Tao Y, Wang X. Chem. Commun. 2015; 51: 8504
- 58 Ouyang H, Nie K, Yuan D, Yao Y. Dalton Trans. 2017; 46: 15928
- 59 Yin Q, Tong R, Xu Y, Baek K, Dobrucki LW, Fan TM, Cheng J. Biomacromolecules 2013; 14: 920
- 60 Zhang Z, Yin L, Tu C, Song Z, Zhang Y, Xu Y, Tong R, Zhou Q, Ren J, Cheng J. ACS Macro Lett. 2013; 2: 40
- 61 Brignou P, Guillaume SM, Roisnel T, Bourissou D, Carpentier JF. Chem. Eur. J. 2012; 18: 9360
- 62 Piedra-Arroni E, Brignou P, Amgoune A, Guillaume SM, Carpentier J.-F, Bourissou D. Chem. Commun. 2011; 47: 9828
- 63 Wang Q, Zhao W, He J, Zhang Y, Chen EY. X. Macromolecules 2017; 50: 123
- 64 Naumann S, Scholten PB. V, Wilson JA, Dove AP. J. Am. Chem. Soc. 2015; 137: 14439
- 65 Meisner J, Karwounopoulos J, Walther P, Kästner J, Naumann S. Molecules 2018; 23: 432
- 66 Wang B, Pan L, Ma Z, Li Y. Macromolecules 2018; 51: 836
- 67 Liu S, Bai T, Ni K, Chen Y, Zhao J, Ling J, Ye X, Zhang G. Angew. Chem. Int. Ed. 2019; 58: 15478
- 68 Cywar RM, Zhu J.-B, Chen EY. X. Polym. Chem. 2019; 10: 3097
- 69 Piedra-Arroni E, Ladavière C, Amgoune A, Bourissou D. J. Am. Chem. Soc. 2013; 135: 13306
- 70 Li X.-Q, Wang B, Ji H.-Y, Li Y.-S. Catal. Sci. Technol. 2016; 6: 7763
- 71 Nie YZ, Wang P, Du HF, Meng W, Yang J. Polym. Chem. 2018; 9: 5014
- 72 Wang P, Liang JP, Yin T, Yang J. Polym. Chem. 2019; 10: 5498
- 73 Feng Q, Tong R. J. Am. Chem. Soc. 2017; 139: 6177
- 74 Moore DR, Cheng M, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 2003; 125: 11911
- 75 Cheng M, Moore DR, Reczek JJ, Chamberlain BM, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 2001; 123: 8738
- 76 Garlotta D. J. Polym. Environ. 2001; 9: 63
- 77 Slomkowski S, Penczek S, Duda A. Polym. Adv. Technol. 2014; 25: 436
- 78 Deming TJ. Nature 1997; 390: 386
- 79 Deming TJ, Curtin SA. J. Am. Chem. Soc. 2000; 122: 5710
- 80 Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
- 81 Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 1
- 82 Zhong YL, Feng QY, Wang XQ, Chen J, Cai WJ, Tong R. ACS Macro Lett. 2020; 9: 1114
- 83 Wang Y, Xu T.-Q. Macromolecules 2020; 53: 8829
- 84 Worch JC, Prydderch H, Jimaja S, Bexis P, Becker ML, Dove AP. Nat. Rev. Chem. 2019; 3: 514
- 85 Natta G, Pino P, Corradini P, Danusso F, Mantica E, Mazzanti G, Moraglio G. J. Am. Chem. Soc. 1955; 77: 1708
- 86 Malanga M. Adv. Mater. 2000; 12: 1869
- 87 Szymański JK, Abul-Haija YM, Cronin L. Acc. Chem. Res. 2018; 51: 649
- 88 Badi N, Lutz JF. Chem. Soc. Rev. 2009; 38: 3383
- 89 De Neve J, Haven JJ, Maes L, Junkers T. Polym. Chem. 2018; 9: 4692
- 90 Lutz JF, Ouchi M, Liu DR, Sawamoto M. Science 2013; 341: 628
- 91 Jaffredo CG, Chapurina Y, Guillaume SM, Carpentier JF. Angew. Chem. Int. Ed. 2014; 53: 2687
- 92 Ovitt TM, Coates GW. J. Am. Chem. Soc. 1999; 121: 4072
- 93 Chamberlain BM, Cheng M, Moore DR, Ovitt TM, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 2001; 123: 3229
- 94 Ovitt TM, Coates GW. J. Am. Chem. Soc. 2002; 124: 1316
- 95 Hador R, Botta A, Venditto V, Lipstman S, Goldberg I, Kol M. Angew. Chem. Int. Ed. 2019; 58: 14679
- 96 Press K, Goldberg I, Kol M. Angew. Chem. Int. Ed. 2015; 54: 14858
- 97 Lee J, Yoon M, Lee H, Nayab S. RSC Adv. 2020; 10: 16209
- 98 Stosser T, Williams CK. Angew. Chem. Int. Ed. 2018; 57: 6337
- 99 Myers D, White AJ. P, Forsyth CM, Bown M, Williams CK. Angew. Chem. Int. Ed. 2017; 56: 5277
- 100 Marin P, Tschan MJ. L, Isnard F, Robert C, Haquette P, Trivelli X, Chamoreau LM, Guerineau V, del Rosal I, Maron L, Venditto V, Thomas CM. Angew. Chem. Int. Ed. 2019; 58: 12585
- 101 Fortun S, Daneshmand P, Schaper F. Angew. Chem. Int. Ed. 2015; 54: 13669
- 102 Feng Q, Yang L, Zhong Y, Guo D, Liu G, Xie L, Huang W, Tong R. Nat. Commun. 2018; 9: 1
- 103 Cui Y, Jiang J, Pan X, Wu J. Chem. Commun. 2019; 55: 12948
- 104 Jiang JX, Cui YQ, Lu YG, Zhang B, Pan XB, Wu JC. Macromolecules 2020; 53: 946
- 105 Chmura AJ, Chuck CJ, Davidson MG, Jones MD, Lunn MD, Bull SD, Mahon MF. Angew. Chem. Int. Ed. 2007; 46: 2280
- 106 Chmura AJ, Davidson MG, Frankis CJ, Jones MD, Lunn MD. Chem. Commun. 2008; (11) 1293
- 107 Jia Z, Chen S, Jiang J, Mao X, Pan X, Wu J. Inorg. Chem. 2020; 59: 10353
- 108 Tang X, Chen EY. X. Nat. Commun. 2018; 9: 2345
- 109 Tang X, Westlie AH, Watson EM, Chen EY.-X. Science 2019; 366: 754
- 110 Sulley GS, Gregory GL, Chen TT. D, Peña Carrodeguas L, Trott G, Santmarti A, Lee K.-Y, Terrill NJ, Williams CK. J. Am. Chem. Soc. 2020; 142: 4367
- 111 Deacy AC, Kilpatrick AF. R, Regoutz A, Williams CK. Nat. Chem. 2020; 12: 372
- 112 Childers MI, Longo JM, Van Zee NJ, LaPointe AM, Coates GW. Chem. Rev. 2014; 114: 8129
- 113 Zhu YQ, Radlauer MR, Schneiderman DK, Shaffer MS. P, Hillmyer MA, Williams CK. Macromolecules 2018; 51: 2466
- 114 Walsh DJ, Hyatt MG, Miller SA, Guironnet D. ACS Catal. 2019; 9: 11153
- 115 Tong R, Yala L, Fan TM, Cheng J. Biomaterials 2010; 31: 3043
- 116 Bahramian B, Ma Y, Rohanizadeh R, Chrzanowski W, Dehghani F. Green Chem. 2016; 18: 3740
- 117 Li M, Zhang S, Zhang X, Wang Y, Chen J, Tao Y, Wang X. Angew. Chem. Int. Ed.