DMW – Klinischer Fortschritt, Table of Contents Dtsch Med Wochenschr 2015; 140(03): 177-180DOI: 10.1055/s-0041-100255 Klinischer Fortschritt Intensivmedizin © Georg Thieme Verlag KG Stuttgart · New York Volumenersatztherapie – ist weniger mehr? Fluid resuscitation – less is more? Michael Pfeifer 1 Pneumologische Abteilung, Klinik Donaustauf › Author Affiliations Recommend Article Abstract Buy Article Was ist neu? Kristalloide oder kolloide Lösung? HAES-Produkte sollte bei der Behandlung von Patienten im akuten septischen und traumatischen Shock vermieden werden. GOAL-directed-fluid-Therapie: Das Prinzip der zielgerichteten Volumentherapie („Goal-directed fluid therapy“) ist grundsätzlich richtig und hat sich bewährt. Eine „Über-Infusion“ mit Hypervolämie steigert jedoch die Mortalität und ist zu vermeiden. Parameter, die die Dynamik der Kreislaufreaktion erfassen, sind zur Steuerung des Volumenmanagement statischen Messwerten überlegen. Schlüsselwörter SchlüsselwörterVolumenmanagement - HAES - Albumin Key Words Key Wordsvolume management - HAES - albumin Full Text References Literaturverzeichnis 1 Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med 2013; 41: 1774-1781 2 Rivers E, Nguyen B, Havstad S et al. Early Goal-Directed Therapy Collaborative G. Early goal-directed therapy in the treatment of severe sepsis and septic shock. The N Engl J Med 2001; 345: 1368-1377 3 Kellum JA. Determinants of blood ph in health and disease. Crit Care 2000; 4: 6-14 4 Hartog CS, Bauer M, Reinhart K. The efficacy and safety of colloid resuscitation in the critically ill. Anesth Analg 2011; 112: 156-164 5 Dubois MJ, Orellana-Jimenez C, Melot C et al. Albumin administration improves organ function in critically ill hypoalbuminemic patients: A prospective, randomized, controlled, pilot study. Crit Care Med 2006; 34: 2536-2540 6 Caironi P, Tognoni G, Masson S et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med 2014; 370: 1412-1421 7 Brunkhorst FM, Engel C, Bloos F et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 2008; 358: 125-139 8 Perner A, Haase N, Guttormsen AB et al. Hydroxyethyl starch 130/0.42 versus ringer’s acetate in severe sepsis. N Engl J Med 2012; 367: 124-134 9 Myburgh JA, Finfer S, Bellomo R et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med 2012; 367: 1901-1911 10 Annane D, Siami S, Jaber S et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: The cristal randomized trial. JAMA 2013; 310: 1809-1817 11 Seymour CW, Angus DC. Making a pragmatic choice for fluid resuscitation in critically ill patients. JAMA 2013; 310: 1803-1804 12 Bartels K, Thiele RH, Gan TJ. Rational fluid management in today’s icu practice. Crit Care 2013; 17 (Suppl. 01) S6 13 Gan TJ, Soppitt A, Maroof M et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 2002; 97: 820-826 14 Ebm C, Cecconi M, Sutton L et al. A cost-effectiveness analysis of postoperative goal-directed therapy for high-risk surgical patients. Crit Care Med 2014; 42: 1194-1203 15 Arulkumaran N, Corredor C, Hamilton MA et al. Cardiac complications associated with goal-directed therapy in high-risk surgical patients: A meta-analysis. Br J Anaesth 2014; 112: 648-659 16 Rhodes A, Cecconi M, Hamilton M et al. Goal-directed therapy in high-risk surgical patients: A 15-year follow-up study. Intensive Care Med 2010; 36: 1327-1332 17 Maitland K, Kiguli S, Opoka RO et al. Mortality after fluid bolus in african children with severe infection. N Engl J Med 2011; 364: 2483-2495 18 Zhang Z, Zhang Z, Xue Y et al. Prognostic value of b-type natriuretic peptide (bnp) and its potential role in guiding fluid therapy in critically ill septic patients. Scand J Trauma Resusc Emerg Med 2012; 20: 86 19 Marik PE, Lemson J. Fluid responsiveness: An evolution of our understanding. Br J Anaesth 2014; 112: 617-620 20 Silva PL, Pelosi P, Rocco PR. Fluids in acute respiratory distress syndrome: Pros and cons. Curr Opin Crit Care 2014; 20: 104-112 21 Jacob M, Chappell D. Reappraising starling: The physiology of the microcirculation. Curr Opin Crit Care 2013; 19: 282-289 22 Bruegger D, Schwartz L, Chappell D et al. Release of atrial natriuretic peptide precedes shedding of the endothelial glycocalyx equally in patients undergoing on- and off-pump coronary artery bypass surgery. Basic Res Cardiol 2011; 106: 1111-1121 23 Cavallaro F, Sandroni C, Marano C et al. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: Systematic review and meta-analysis of clinical studies. Intensive Care Med 2010; 36: 1475-1483 24 Muller L, Toumi M, Bousquet PJ et al. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: The mini-fluid challenge study. Anesthesiology 2011; 115: 541-547 25 Dellinger RP, Levy MM, Rhodes A et al. Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 2013; 41: 580-637 26 Caltabeloti F, Monsel A, Arbelot C et al. Early fluid loading in acute respiratory distress syndrome with septic shock deteriorates lung aeration without impairing arterial oxygenation: A lung ultrasound observational study. Crit Care 2014; 18: R91 27 Chawla LS, Ince C, Chappell D et al. Vascular content, tone, integrity, and haemodynamics for guiding fluid therapy: A conceptual approachdouble dagger. Br J Anaesth 2014; 113: 748-755 28 Kanji HD, McCallum J, Sirounis D et al. Limited echocardiography-guided therapy in subacute shock is associated with change in management and improved outcomes. J Crit Care 2014; 29: 700-705