RSS-Feed abonnieren
DOI: 10.1055/s-0041-101010
Supportive Sepsistherapie: Benutzen wir die falsche Zielgröße?
Do we use the wrong target value for the supportive therapy of sepsis?Publikationsverlauf
Publikationsdatum:
16. März 2015 (online)
Zusammenfassung
Die Sepsis ist eine generalisierte, meist mikrobiell ausgelöste Entzündung mit komplexer Immunantwort und einem kapillaren Leakage. Dieses verursacht einen meist schweren Blutdruckabfall mit reduzierter Perfusion und sympathischer Gegenregulation. Häufig ist auch die Lunge durch die Entzündung selber oder durch ein Acute Respiratory Distress Syndrome betroffen. Eine schwere Hypoxämie ist die Folge. Die supportive Therapie dient dazu, die Hämodynamik zu stabilisieren mit dem Ziel, den arterieller Sauerstoffpartialdruck (PaO2) im Normbereich zu halten.
Pathophysiologisch ist nicht plausibel, eine Hypoxie am PaO2 oder der arteriellen Sauerstoffsättigung (SaO2) festzumachen, da die Zahl der Sauerstoffmoleküle die Versorgung der Zellen bestimmt. Die Versogung spiegelt sich nur im Sauerstoffgehalt (CaO2) und dem hämodyamischen Transport (Herzleistung) wider. Soweit es Untersuchungen zur Hypoxietoleranz der Organe gibt, zeigen sie jedenfalls einen 5–10fach niedrigeren Grenzwert als er heute vorgegeben wird bzw. ab dem die Zellen auf anaeroben Stoffwechsel umschalten. Wäre der CaO2 die Zielgröße der supportiven Therapie, würden viele Maßnahmen zur Aufrechterhaltung einer Normoxämie entfallen. Zu diesen den Patienten oft stark belastenden Schritten gehören hohe, oft toxische inspiratorische Sauerstoffkonzentrationen, hohe Beatmungsdrücke, belastende Lagerungsmaßnahmen und eine überschießende Volumentherapie.
Es überrascht daher nicht, dass es bisher keine plausiblen Daten gibt, die einen positiven Effekt für die Zielgröße PaO2 bzw. SaO2 nachgewiesen haben. Daher sind dringend Studien zur supportiven Sepsistherapie erforderlich, in denen der CaO2 als Zielgröße mit den aktuellen Vorgaben in den Leitlinien verglichen wird. Weiterhin sind Tierversuche nötig, um den kritischen Wert für CaO2 festzulegen. Ziel ist, den Größenbereich für die Therapie von schwer hypoxämischen Patienten auf der Intensivstation abschätzen zu können.
Abstract
Sepsis is a generalized, usually infectious disease with a complex dsyregulated immune response and capillary leak. The leakage leads to a severe drop of blood pressure with hypoperfusion and sympathetic counterregulation. The lung is frequently involved either as a source of the inflammation or by emergence of an ARDS, both resulting into severe hypoxemia. The supportive therapy is used to stabilize the hemodynamics and to keep the target value partial pressure of arterial oxygen (PaO2) in the lower limit of normal.
Pathophysiologically it is not plausible to define hypoxemia on the basis of PaO2 or SaO2, because the supply of the cells is determined by the amount of oxygen molecules. This is mirrored by the oxygen content (CaO2) and the hemodynamic transport, the cardiac output. As far as data about the hypoxic tolerance of organs are available, the critical value respective the threshold for anaerobic metabolism is 5–10 folds lower than values achieved by application of current guidelines. If CaO2 would be used as the target value, a lot of measures aiming for normoxia, which potentially harm patients, could be avoided. Among these measures are high, often toxic inspiratory concentrations of oxygen, high ventilation pressure, dangerous body position changes and excessive volume administration.
It is not surprising, that there are no plausible data in the literature which have shown a positive effect for the target value PaO2 or SaO2. Studies are urgent needed to compare CaO2 as a target value to the standards in the current guidelines. Additional animal experiments should be done to get information on the critical range of CaO2, in order to translate these results into treatment strategies for intensive care unit patients with severe hypoxemia.
-
Literatur
- 1 Rittirsch D, Redl H, Huber-Lang M. Role of complement in multiorgan failure. Clin Dev Immunol 2012; 2012: 962927
- 2 Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol 2008; 8: 776-787
- 3 Gill SE, Taneja R, Rohan M et al. Pulmonary microvascular albumin leak is associated with endothelial cell death in murine sepsis-induced lung injury in vivo. PLoS One 2014; 9: e88501
- 4 Marx G, Pedder S, Smith L et al. Resuscitation from septic shock with capillary leakage: hydroxyethyl starch (130 kd), but not Ringer‘s solution maintains plasma volume and systemic oxygenation. Shock 2004; 21: 336-341
- 5 Goldenberg NM, Steinberg BE, Slutsky AS, Lee WL. Broken barriers: a new take on sepsis pathogenesis. Sci Transl Med 2011; 3: 88ps25
- 6 Rivers E, Nguyen B, Havstad S et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001; 345: 1368-1377
- 7 ProCESS Investigators. Yealy DM, Kellum JA et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med 2014; 370: 1683-1693
- 8 Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.. Leitlinien der Deutschen Sepsis-Gesellschaft und der Deutschen Interdisziplinären Vereinigung für Intensiv- und Notfallmedizin: Prävention, Diagnose, Therapie und Nachsorge der Sepsis. 2005. http://www.awmf.org/uploads/tx_szleitlinien/079-001l_S2k_Sepsis_2010-abgelaufen.pdf Stand: 16.02.2015
- 9 Dellinger RP, Levy MM, Rhodes A et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 2013; 39: 165-228
- 10 Lorente L, Lecuona M, Jiménez A et al. Influence of an endotracheal tube with polyurethane cuff and subglottic secretion drainage on pneumonia. Am J Respir Crit Care Med 2007; 176: 1079-1083
- 11 Nguyen HB, Corbett SW, Steele R et al. Implementation of a bundle of quality indicators for the early management of severe sepsis and septic shock is associated with decreased mortality. Crit Care Med 2007; 35: 1105-1112
- 12 Ferrer R, Artigas A, Levy MM et al. Improvement in process of care and outcome after a multicenter severe sepsis educational program in Spain. JAMA 2008; 299: 2294-2303
- 13 Kortgen A, Niederprüm P, Bauer M. Implementation of an evidence-based „standard operating procedure“ and outcome in septic shock. Crit Care Med 2006; 34: 943-949
- 14 Hopkins RO, Weaver LK, Collingridge D et al. Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am J Respir Crit Care Med 2005; 171: 340-347
- 15 Mikkelsen ME, Christie JD, Lanken PN et al. The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am J Respir Crit Care Med 2012; 185: 1307-1315
- 16 Haswell MS, Tacker Jr WA, Balldin UI, Burton RR. Influence of inspired oxygen concentration on acceleration atelectasis. Aviat Space Environ Med 1986; 57: 432-437
- 17 Rothen HU, Sporre B, Engberg G et al. Prevention of atelectasis during general anaesthesia. Lancet 1995; 345: 1387-1391
- 18 Köhler D. CaO2-Wert zur Beurteilung der Sauerstoff-Organversorgung. Klinische Bedeutung des Sauerstoffgehaltes. Dtsch Artzebl 2005; 102: A2026-2031
- 19 Schönhofer B, Wenzel M, Geibel M, Köhler D. Blood transfusion and lung function in chronically anemic patients with severe chronic obstructive pulmonary disease. Crit Care Med 1998; 26: 1824-1828
- 20 Brierley JB, Nicholson AN. Neurological sequelae of decompression in supersonic transport aircraft. Proc R Soc Med 1973; 66: 527-530
- 21 Brooks CJ. Loss of cabin pressure in Canadian Forces ejection seat aircraft, 1962–1982. Aviat Space Environ Med 1984; 55: 1154-1163
- 22 Ernsting J. Hypoxia in the aviation environment. Proc R Soc Med 1973; 66: 523-527
- 23 Grocott MP, Martin DS, Levett DZ et al. Arterial blood gases and oxygen content in climbers on Mount Everest. N Engl J Med 2009; 360: 140-149
- 24 Martin DS, Cobb A, Meale P et al. Systemic oxygen extraction during exercise at high altitude. Br J Anaesth 2014; pii aeu404
- 25 Borgia JF, Horvath SM. Effects of acute prolonged hypoxia on cardiovascular dynamics in dogs. J Appl Physiol Respir Environ Exerc Physiol 1977; 43: 784-789
- 26 Grubbström J, Berglund B, Kaijser L. Myocardial oxygen supply and lactate metabolism during marked arterial hypoxaemia. Acta Physiol Scand 1993; 149: 303-310
- 27 Mazer CD, Stanley WC, Hickey RF et al. Myocardial metabolism during hypoxia: maintained lactate oxidation during increased glycolysis. Metabolism 1990; 39: 913-918
- 28 Taylor PM. Effects of hypoxia on endocrine and metabolic responses to anaesthesia in ponies. Res Vet Sci 1999; 66: 39-44
- 29 Todd MM, Wu B, Maktabi M et al. Cerebral blood flow and oxygen delivery during hypoxemia and hemodilution: role of arterial oxygen content. Am J Physiol 1994; 267: H2025-2031
- 30 Kaijser L, Grubbström J, Berglund B. Myocardial lactate release during prolonged exercise under hypoxaemia. Acta Physiol Scand 1993; 149: 427-433
- 31 Bernstein D, Teitel DF. Myocardial and systemic oxygenation during severe hypoxemia in ventilated lambs. Am J Physiol 1990; 258: H1856-1864
- 32 Roach RC, Koskolou MD, Calbet JA, Saltin B. Arterial O2 content and tension in regulation of cardiac output and leg blood flow during exercise in humans. Am J Physiol 1999; 276: H438-445
- 33 Ekblom B, Huot R, Stein EM, Thorstensson AT. Effect of changes in arterial oxygen content on circulation and physical performance. J Appl Physiol 1975; 39: 71-75
- 34 Ba ZF, Wang P, Koo DJ et al. Alterations in tissue oxygen consumption and extraction after traum-a and hemorrhagic shock. Crit Care Med 2000; 28: 2837-2842
- 35 Schlichting E, Lyberg T. Monitoring of tissue oxygenation in shock: an experimental study in pigs. Crit Care Med 1995; 23: 1703-1710
- 36 Viires N, Sillye G, Aubier M et al. Regional blood flow distribution in dog during induced hypotension and low cardiac output. Spontaneous breathing versus artificial ventilation. J Clin Invest 1983; 72: 935-947
- 37 Howald H, Pette D, Simoneau JA et al. Effect of chronic hypoxia on muscle enzyme activities. Int J Sports Med 1990; 11 (Suppl. 01) S10-14
- 38 Jacobs RA, Boushel R, Wright-Paradis C et al. Mitochondrial function in human skeletal muscle following high-altitude exposure. Exp Physiol 2013; 98: 245-255
- 39 Levett DZ, Radford EJ, Menassa DA et al. Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an ascent of Everest. FASEB J 2012; 26: 1431-1441
- 40 Simon LM, Robin ED, Phillips JR et al. Enzymatic basis for bioenergetic differences of alveolar versus peritoneal macrophages and enzyme regulation by molecular O2. J Clin Invest 1977; 59: 443-448
- 41 Terrados N, Jansson E, Sylvén C, Kaijser L. Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin?. J Appl Physiol (1985) 1990; 68: 2369-2372
- 42 Yoshino M, Kato K, Murakami K et al. Shift of anaerobic to aerobic metabolism in the rats acclimatized to hypoxia. Comp Biochem Physiol A Comp Physiol 1990; 97: 341-344
- 43 Zhang ZY, Chen B, Zhao DJ, Kang L. Functional modulation of mitochondrial cytochrome c oxidase underlies adaptation to high-altitude hypoxia in a Tibetan migratory locust. Proc Biol Sci 2013; 280: 20122758
- 44 Kraut JA, Madias NE. Lactic acidosis. N Engl J Med 2014; 371: 2309-2319
- 45 Chandel N, Budinger GR, Kemp RA, Schumacker PT. Inhibition of cytochrome-c oxidase activity during prolonged hypoxia. Am J Physiol 1995; 268: L918-925
- 46 Gnaiger E. Oxygen conformance of cellular respiration. A perspective of mitochondrial physiology. Adv Exp Med Biol 2003; 543: 39-55
- 47 Keykhah MM, Hägerdal M, Welsh FA et al. Effect of high vs. low arterial blood oxygen content on cerebral energy metabolite levels during hypoxia with normothermia and hypothermia in the rat. Anesthesiology 1980; 52: 492-495
- 48 Dautzenberg B, de Lattre J, Camus F et al. Study upon oxygen conveyance in severe anaemia. About a very serious case of hemolytic anaemia which led to a myocardial infarct (author‘s transl). Nouv Presse Med 1979; 8: 2005-2007
- 49 Murray LA, Knight DA, McAlonan L et al. Deleterious role of TLR3 during hyperoxia-induced acute lung injury. Am J Respir Crit Care Med 2008; 178: 1227-1237
- 50 Dreyfuss D, Basset G, Soler P, Saumon G. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 1985; 132: 880-884