Subscribe to RSS
DOI: 10.1055/s-0041-102960
Durchflusszytometrische Kontrolle von MSC-Produkten im Rahmen der Herstellung als ATMP für klinische Prüfungen
Flow Cytometry Control of MSC used as ATMP for Clinical TrialsPublication History
Publication Date:
21 August 2015 (online)
Zusammenfassung
Ex vivo expandierte mesenchymale Stroma-/Stammzellen (MSC) werden mittlerweile aus zahlreichen Geweben isoliert und in klinischen Studien der regenerativen Medizin und der immunmodulatorischen Therapie eingesetzt. Die bisher existierenden Definitionen der MSC sind zwar sehr allgemein gefasst, Kriterien zur Verwendung von MSC in unterschiedlichen klinischen Einsatzgebieten bedürfen jedoch ggf. einer angepassten Spezifikation. Wir stellen hier die Vorgehensweise der durchflusszytometrischen Charakterisierung von MSC zum Einsatz in klinischen Prüfungen zur Knochenregeneration vor und diskutieren die Notwendigkeit, Spezifikationen für MSC in Abhängigkeit von ihrem jeweiligen Einsatzgebiet zu definieren.
Abstract
Ex vivo expanded mesenchymal stromal/stem cells (MSC) isolated from various tissues are subject of an increasing number of clinical trials in regenerative as well as immunomodulatory therapy. Existing definitions for MSC do not necessarily take into account that MSC used for different clinical applications need different specifications. We present a flow cytometry based definition of MSC for clinical trials in bone regeneration and critically discuss the need for specific definitions of MSC, depending on their field of clinical application.
-
Literatur
- 1 Horwitz EM, Le Blanc K, Dominici M et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 2005; 7: 393-395
- 2 Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315-317
- 3 Bourin P, Bunnell BA, Casteilla L et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013; 15: 641-648
- 4 Kern S, Eichler H, Stoeve J et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24: 1294-1301
- 5 Wuchter P, Bieback K, Schrezenmeier H et al. Standardization of good manufacturing practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy 2015; 17: 128-139
- 6 Crisan M, Yap S, Casteilla L et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3: 301-313
- 7 Fekete N, Rojewski MT, Furst D et al. GMP-compliant isolation and large-scale expansion of bone marrow-derived MSC. PLoS One 2012; 7: e43255
- 8 Deutscher Apotheker Verlag. 2.7.24 Durchflusszytometrie. In: Deutscher Apotheker Verlag, Hrsg. Europäisches Arzneibuch, 8. Ausgabe, Grundwerk 2014, Band 1. Allgemeiner Teil, Monographiegruppen. Amtliche deutsche Ausgabe. Bonn: Deutscher Apotheker Verlag – Govi-Verlag – Pharmazeutischer Verlag; 2014: 362-365
- 9 Drexler HG. KG-1. In: Drexler HG, Hrsg. The Leukemia-Lymphoma Cell Line FactsBook. San Diego: Academic Press; 2001: 537-538
- 10 Furley AJ, Reeves BR, Mizutani S et al. Divergent molecular phenotypes of KG1 and KG1a myeloid cell lines. Blood 1986; 68: 1101-1107
- 11 Schwarz K, Iolascon A, Verissimo F et al. Mutations affecting the secretory COPII coat component SEC23B cause congenital dyserythropoietic anemia type II. Nat Genet 2009; 41: 936-940
- 12 Wagner W, Wein F, Seckinger A et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005; 33: 1402-1416
- 13 Klein CA, Wilke M, Pool J et al. The hematopoietic system-specific minor histocompatibility antigen HA-1 shows aberrant expression in epithelial cancer cells. J Exp Med 2002; 196: 359-368
- 14 Peyron JF, Verma S, de Waal Malefyt R et al. The CD45 protein tyrosine phosphatase is required for the completion of the activation program leading to lymphokine production in the Jurkat human T cell line. Int Immunol 1991; 3: 1357-1366
- 15 Wilke M, Dolstra H, Maas F et al. Quantification of the HA-1 gene product at the RNA level; relevance for immunotherapy of hematological malignancies. Hematol J 2003; 4: 315-320
- 16 Wood B. Multicolor immunophenotyping: human immune system hematopoiesis. Methods Cell Biol 2004; 75: 559-576
- 17 Buccisano F, Rossi FM, Venditti A et al. CD90/Thy-1 is preferentially expressed on blast cells of high risk acute myeloid leukaemias. Br J Haematol 2004; 125: 203-212
- 18 Clifford EE, Martin KA, Dalal P et al. Stage-specific expression of P2Y receptors, ecto-apyrase, and ecto-5′-nucleotidase in myeloid leukocytes. Am J Physiol 1997; 273: C973-C987
- 19 Peola S, Borrione P, Matera L et al. Selective induction of CD73 expression in human lymphocytes by CD38 ligation: a novel pathway linking signal transducers with ecto-enzyme activities. J Immunol 1996; 157: 4354-4362
- 20 Wang IY, Feng SH, Pollins SJ et al. Detection of Thy-1 on cell surface of human T lymphoid cell lines by a monoclonal antibody. Hybridoma 1988; 7: 529-540
- 21 Pierelli L, Bonanno G, Rutella S et al. CD105 (endoglin) expression on hematopoietic stem/progenitor cells. Leuk Lymphoma 2001; 42: 1195-1206