Rofo 2016; 188(02): 146-154
DOI: 10.1055/s-0041-106541
Review
© Georg Thieme Verlag KG Stuttgart · New York

Nano-Computed Tomography: Technique and Applications

Nanocomputertomografie: Technik und Applikationen
M. Kampschulte
1   Department of Diagnostic and Interventional Radiology, University Hospital Gießen, Germany
,
A. C. Langheinirch
2   Department of Diagnostic and Interventional Radiology, BG Trauma Hospital Frankfurt/Main, Germany
,
J. Sender
1   Department of Diagnostic and Interventional Radiology, University Hospital Gießen, Germany
,
H. D. Litzlbauer
1   Department of Diagnostic and Interventional Radiology, University Hospital Gießen, Germany
,
U. Althöhn
1   Department of Diagnostic and Interventional Radiology, University Hospital Gießen, Germany
,
J. D. Schwab
1   Department of Diagnostic and Interventional Radiology, University Hospital Gießen, Germany
,
E. Alejandre-Lafont
1   Department of Diagnostic and Interventional Radiology, University Hospital Gießen, Germany
,
G. Martels
1   Department of Diagnostic and Interventional Radiology, University Hospital Gießen, Germany
,
G. A. Krombach
1   Department of Diagnostic and Interventional Radiology, University Hospital Gießen, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

04. November 2014

05. August 2015

Publikationsdatum:
27. Januar 2016 (online)

Abstract

Nano-computed tomography (nano-CT) is an emerging, high-resolution cross-sectional imaging technique and represents a technical advancement of the established micro-CT technology. Based on the application of a transmission target X-ray tube, the focal spot size can be decreased down to diameters less than 400 nanometers (nm). Together with specific detectors and examination protocols, a superior spatial resolution up to 400 nm (10 % MTF) can be achieved, thereby exceeding the resolution capacity of typical micro-CT systems. The technical concept of nano-CT imaging as well as the basics of specimen preparation are demonstrated exemplarily. Characteristics of atherosclerotic plaques (intraplaque hemorrhage and calcifications) in a murine model of atherosclerosis (ApoE (-/-)/LDLR(-/-) double knockout mouse) are demonstrated in the context of superior spatial resolution in comparison to micro-CT. Furthermore, this article presents the application of nano-CT for imaging cerebral microcirculation (murine), lung structures (porcine), and trabecular microstructure (ovine) in contrast to micro-CT imaging. This review shows the potential of nano-CT as a radiological method in biomedical basic research and discusses the application of experimental, high resolution CT techniques in consideration of other high resolution cross-sectional imaging techniques.

Key Points:

• Nano-computed tomography is a high resolution CT-technology for 3D imaging at sub-micrometer resolution.

• The technical concept bases on a further development of the established ex-vivo-micro-CT technology.

• By improvement of the spatial resolution, structures at a cellular level become visible (e.g. osteocyte lacunae).

Citation Format:

• Kampschulte M, Langheinirch AC, Sender J et al. Nano-Computed Tomography: Technique and Applications. Fortschr Röntgenstr 2016; 188: 146 – 154

Zusammenfassung

Die Nanocomputertomografie (Nano-CT) repräsentiert eine noch junge, hochauflösende Schnittbildtechnologie und stellt eine technische Weiterentwicklung der seit Längerem etablierten Mikrocomputertomografie (Mikro-CT) dar. Durch Einsatz einer Transmissionsröhre, deren Röntgenfokusgröße unterhalb von 400 Nanometer (nm) liegt sowie geeigneter Detektoren und Untersuchungsprotokolle, übertrifft die Nano-CT das räumliche Auflösungsvermögen der klassischen Mikro-CT und ermöglicht eine Ortsauflösung von bis zu 400 nm (10 % MTF). Exemplarisch werden technisches Konzept der Nano-CT Bildgebung (Strahlen- und Bildentstehung) sowie Grundlagen der Probenmontage vorgestellt. Am Beispiel eines Atherosklerose-Modells, der ApoE(-/-)/LDLR(-/-)-Doppel-Knockout-Maus, werden Merkmale atherosklerotischer Plaque, d. h. kalzifizierte sowie hämorrhagische Veränderungen im Kontext der hohen Ortsauflösung und im Vergleich zur Mikro-CT demonstriert. Des Weiteren wird die Anwendung der Nano-CT zur Visualisierung der Mikrozirkulation des zerebralen Kortex (Maus), der Strukturdarstellung des Lungenparenchyms (Schwein) und des strukturellen Aufbaus von Knochentrabekeln (Schaf) in Abgrenzung zur Mikro-CT vorgestellt. Die vorliegende Übersichtsarbeit zeigt das Potenzial der Nano-CT als radiologische Methode in der biomedizinischen Grundlagenforschung und diskutiert die Nutzung hochauflösender, experimenteller CT Techniken unter Berücksichtigung alternativer Schnittbildverfahren.

Deutscher Artikel/German Article

 
  • References

  • 1 Kocijan R, Finzel S, Englbrecht M et al. Decreased quantity and quality of the periarticular and nonperiarticular bone in patients with rheumatoid arthritis: a cross-sectional HR-pQCT study. J Bone Miner Res 2014; 29: 1005-1014
  • 2 Kalender WA. Special Applications. In: Kalender WA. Computed tomography fundamentals, system technology, image quality, applications 3. ed. Erlangen: Publicis Corp Publ; 2011: 272
  • 3 Engelke K, Karolczak M, Lutz A et al. Micro-CT. Technology and application for assessing bone structure. Radiologe 1999; 39: 203-212
  • 4 Ortiz MC, Garcia-Sanz A, Bentley MD et al. Microcomputed tomography of kidneys following chronic bile duct ligation. Kidney Int 2000; 58: 1632-1640
  • 5 Badea C, Hedlund LW, Johnson GA. Micro-CT with respiratory and cardiac gating. Med Phys 2004; 31: 3324-3329
  • 6 Lee CL, Min H, Befera N et al. Assessing cardiac injury in mice with dual energy-microCT, 4D-microCT, and microSPECT imaging after partial heart irradiation. Int J Radiat Oncol Biol Phys 2014; 88: 686-693
  • 7 Schneider P, Stauber M, Voide R et al. Ultrastructural properties in cortical bone vary greatly in two inbred strains of mice as assessed by synchrotron light based micro- and nano-CT. J Bone Miner Res 2007; 22: 1557-1570
  • 8 Pacureanu A, Langer M, Boller E et al. Nanoscale imaging of the bone cell network with synchrotron X-ray tomography: optimization of acquisition setup. Med Phys 2012; 39: 2229-2238
  • 9 Kalender WA, Deak P, Engelke K et al. X-Ray and X-Ray CT. In: Kiessling F, Pichler BJ. Small Animal Imaging Basics and Practical Guide. Springer-Verlag Berlin Heidelberg; 2011: 129
  • 10 Feldkamp LA, Davis LC, Kress JW. Practical Cone-Beam Algorithm. J Opt Soc Am A 1984; 1: 612-619
  • 11 Jawien J, Nastalek P, Korbut R. Mouse models of experimental atherosclerosis. J Physiol Pharmacol 2004; 55: 503-517
  • 12 Witting PK, Pettersson K, Ostlund-Lindqvist AM et al. Inhibition by a coantioxidant of aortic lipoprotein lipid peroxidation and atherosclerosis in apolipoprotein E and low density lipoprotein receptor gene double knockout mice. FASEB J 1999; 13: 667-675
  • 13 Gossl M, Herrmann J, Tang H et al. Prevention of vasa vasorum neovascularization attenuates early neointima formation in experimental hypercholesterolemia. Basic Res Cardiol 2009; 104: 695-706
  • 14 Ritman EL, Lerman A. The dynamic vasa vasorum. Cardiovasc Res 2007; 75: 649-658
  • 15 Langheinrich AC, Michniewicz A, Sedding DG et al. Quantitative X-ray imaging of intraplaque hemorrhage in aortas of apoE(-/-)/LDL(-/-) double knockout mice. Invest Radiol 2007; 42: 263-273
  • 16 Langheinrich AC, Bohle RM, Greschus S et al. Atherosclerotic lesions at micro CT: feasibility for analysis of coronary artery wall in autopsy specimens. Radiology 2004; 231: 675-681
  • 17 Kampschulte M, Brinkmann A, Stieger P et al. Quantitative CT imaging of the spatio-temporal distribution patterns of vasa vasorum in aortas of apoE-/-/LDL-/- double knockout mice. Atherosclerosis 2010; 212: 444-450
  • 18 Duvall CL, Taylor WR, Weiss D et al. Quantitative microcomputed tomography analysis of collateral vessel development after ischemic injury. Am J Physiol Heart Circ Physiol 2004; 287: H302-H310
  • 19 McDonough JE, Yuan R, Suzuki M et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med 2011; 365: 1567-1575
  • 20 Litzlbauer HD, Korbel K, Kline TL et al. Synchrotron-based micro-CT imaging of the human lung acinus. Anat Rec (Hoboken) 2010; 293: 1607-1614
  • 21 Watz H, Breithecker A, Rau WS et al. Micro-CT of the human lung: imaging of alveoli and virtual endoscopy of an alveolar duct in a normal lung and in a lung with centrilobular emphysema – initial observations. Radiology 2005; 236: 1053-1058
  • 22 Bouxsein ML, Boyd SK, Christiansen BA et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 2010; 25: 1468-1486
  • 23 Carpentier VT, Wong J, Yeap Y et al. Increased proportion of hypermineralized osteocyte lacunae in osteoporotic and osteoarthritic human trabecular bone: implications for bone remodeling. Bone 2012; 50: 688-694
  • 24 Rochefort GY. The osteocyte as a therapeutic target in the treatment of osteoporosis. Ther Adv Musculoskelet Dis 2014; 6: 79-91
  • 25 Schaffler MB, Kennedy OD. Osteocyte signaling in bone. Curr Osteoporos Rep 2012; 10: 118-125
  • 26 Dong P, Haupert S, Hesse B et al. 3D osteocyte lacunar morphometric properties and distributions in human femoral cortical bone using synchrotron radiation micro-CT images. Bone 2014; 60: 172-185
  • 27 Carter Y, Thomas CD, Clement JG et al. Variation in osteocyte lacunar morphology and density in the human femur – a synchrotron radiation micro-CT study. Bone 2013; 52: 126-132
  • 28 van Hove RP, Nolte PA, Vatsa A et al. Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density – is there a role for mechanosensing?. Bone 2009; 45: 321-329
  • 29 Papantoniou I, Sonnaert M, Geris L et al. Three-dimensional characterization of tissue-engineered constructs by contrast-enhanced nanofocus computed tomography. Tissue Eng Part C Methods 2014; 20: 177-187
  • 30 Stary HC. Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol 2000; 20: 1177-1178
  • 31 Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods 2005; 2: 932-940
  • 32 Claxton NS, Fellers TJ, Davidson MW. Microscopy, Confocal. In: Encyclopedia of Medical Devices and Instrumentation. 2006
  • 33 Podoleanu AG. Optical coherence tomography. J Microsc 2012; 247: 209-219
  • 34 Bezerra HG, Costa MA, Guagliumi G et al. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Interv 2009; 2: 1035-1046
  • 35 Elahi S, Mancuso JJ, Milner TE et al. Sunflower artifact in OCT. JACC Cardiovasc Imaging 2011; 4: 1220-1221
  • 36 Langheinrich AC, Zoerb C, Jajima J et al. Quantification of in-stent restenosis parameters in rabbits by Micro-CT. Fortschr Röntgenstr 2005; 177: 501-506
  • 37 Turnbull DH, Starkoski BG, Harasiewicz KA et al. A 40–100 MHz B-scan ultrasound backscatter microscope for skin imaging. Ultrasound Med Biol 1995; 21: 79-88
  • 38 Petter-Puchner A, Gruber-Blum S, Walder N et al. Ultrasound biomicroscopy (UBM) and scanning acoustic microscopy (SAM) for the assessment of hernia mesh integration: a comparison to standard histology in an experimental model. Hernia 2014; 18: 579-585
  • 39 Raum K, Kempf K, Hein HJ et al. Preservation of microelastic properties of dentin and tooth enamel in vitro – a scanning acoustic microscopy study. Dent Mater 2007; 23: 1221-1228
  • 40 Maeva E, Severin F, Miyasaka C et al. Acoustic imaging of thick biological tissue. IEEE Trans Ultrason Ferroelectr Freq Control 2009; 56: 1352-1358
  • 41 Sen Sharma K, Gong H, Ghasemalizadeh O et al. Interior micro-CT with an offset detector. Med Phys 2014; 41: 061915
  • 42 Sen Sharma K, Holzner C, Vasilescu DM et al. Scout-view assisted interior micro-CT. Phys Med Biol 2013; 58: 4297-4314
  • 43 Xia Y, Dennerlein F, Bauer S et al. Scaling calibration in region of interest reconstruction with the 1D and 2D ATRACT algorithm. Int J Comput Assist Radiol Surg 2014; 9: 345-356
  • 44 Nedelmann M, Ritschel N, Doenges S et al. Combined contrast-enhanced ultrasound and rt-PA treatment is safe and improves impaired microcirculation after reperfusion of middle cerebral artery occlusion. J Cereb Blood Flow Metab 2010; 30: 1712-1720
  • 45 Vatsa A, Breuls RG, Semeins CM et al. Osteocyte morphology in fibula and calvaria – is there a role for mechanosensing?. Bone 2008; 43: 452-458
  • 46 Langheinrich AC, Kampschulte M, Scheiter F et al. Atherosclerosis, inflammation and lipoprotein glomerulopathy in kidneys of apoE-/-/LDL-/- double knockout mice. BMC Nephrol 2010; 11: 18
  • 47 Wagner R, Van Loo D, Hossler F et al. High-resolution imaging of kidney vascular corrosion casts with Nano-CT. Microsc Microanal 2011; 17: 215-219
  • 48 Parkinson CR, Sasov A. High-resolution non-destructive 3D interrogation of dentin using X-ray nanotomography. Dent Mater 2008; 24: 773-777