Z Gastroenterol 2015; 53(11): 1276-1287
DOI: 10.1055/s-0041-106855
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Klinische Bedeutung von Infektionen durch Carbapenem-resistente Enterobakterien bei Lebertransplantierten

Clinical impact of infections with carbapenem-resistant enterobacteriaceae in liver transplant recipients
C. Lübbert
1   Fachbereich Infektions- und Tropenmedizin, Klinik für Gastroenterologie und Rheumatologie, Universitätsklinikum Leipzig
,
H. M. Hau
2   Klinik für Viszeral-, Gefäß-, Thorax- und Transplantationschirurgie, Universitätsklinikum Leipzig
,
A. Rodloff
3   Institut für Medizinische Mikrobiologie und Infektionsepidemiologie, Universitätsklinikum Leipzig
,
J. Mössner
4   Klinik für Gastroenterologie und Rheumatologie, Universitätsklinikum Leipzig
,
A. Mischnik
5   Abteilung Infektiologie, Klinik für Innere Medizin II, Universitätsklinikum Freiburg
,
S. Bercker
6   Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Leipzig
,
M. Bartels*
2   Klinik für Viszeral-, Gefäß-, Thorax- und Transplantationschirurgie, Universitätsklinikum Leipzig
,
U. X. Kaisers*
6   Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Leipzig
› Author Affiliations
Further Information

Publication History

06 July 2015

02 September 2015

Publication Date:
12 November 2015 (online)

Zusammenfassung

Infektionen durch Carbapenem-resistente Enterobakterien (CRE) stellen aufgrund ihrer hohen Morbidität und Mortalität weltweit eine wachsende Bedrohung für Lebertransplantatempfänger (LTR) dar, v. a. bei Nachweis von Klebsiella pneumoniae Carbapenemase (KPC)-bildenden Erregern. Nach der aktuellen Literatur entwickeln 3 bis 13 % der Organtransplantierten in Endemiegebieten Infektionen durch CRE, wobei der primäre Infektionsort eng mit dem transplantierten Organ im Zusammenhang steht. Die kumulative 30-Tage-Sterblichkeit von LTR mit Infektionen durch Carbapenem-resistente K. pneumoniae liegt bei 36 %, und die 180-Tage-Mortalitätsrate beträgt 58 %. Die hohe Anfälligkeit von LTR für potenziell tödlich verlaufende bakterielle Infektionen mit multiresistenten Erregern (MRE) führt in der Praxis zu einer häufigeren empirischen Anwendung von erweiterten Breitspektrum-Antibiotikatherapien, die wiederum die Selektion extremer Resistenzen fördert. Dennoch besteht eine relevante Gefahr des Scheiterns der herkömmlichen empirischen Behandlung, da kulturbasierte Techniken zur mikrobiologischen Identifikation von CRE eine 48- bis 72-stündige Verzögerung von der Abnahme der Blutkulturen bis zur mikrobiologischen Befunderstellung mit Resistenztestung beinhalten, sodass zielgerichtete Therapien nur verzögert begonnen werden können. Dieser Teufelskreis ist schwer zu durchbrechen und führt zu einer fortwährenden Einengung der antibiotischen Behandlungsmöglichkeiten. Da die derzeit verfügbaren therapeutischen Optionen äußerst begrenzt sind, kommt der Infektionsprävention eine herausragende Bedeutung zu, v. a. in der Frühphase nach Lebertransplantation mit intensiver Immunsuppression. Die Verbesserung klinischer Behandlungsergebnisse ist eine große Herausforderung und erfordert einen mehrgliedrigen Ansatz, bei dem stringent praktizierte Hygienemaßnahmen, Screening-Tests auf MRE, zeitsparende molekularbiologische Untersuchungstechniken und Antibiotic Stewardship (ABS) kombiniert werden. Dieser Artikel stellt die aktuelle Literatur in Bezug auf die Häufigkeit und das klinische Outcome von CRE-Infektionen bei LTR vor und fasst aktuelle präventive und therapeutische Empfehlungen zusammen, um die Bedrohung durch CRE im Real-Life-Setting der klinischen Transplantationsmedizin zu minimieren.

Abstract

Infections with carbapenem-resistant Enterobacteriaceae (CRE) are an emerging cause of morbidity and mortality among liver transplant recipients (LTR) worldwide, particularly Klebsiella pneumoniae carbapenemase (KPC)-producing organisms. Approximately 3 – 13 % of solid organ transplant recipients in CRE-endemic areas develop CRE infections, and the infection site correlates with the transplanted organ. The cumulative 30-day mortality rate of LTR infected with carbapenem-resistant K. pneumoniae is 36 %, and the 180-day mortality rate is 58 %. Awareness of the high vulnerability of LTR to fatal bacterial infection leads to the more frequent use of ultrabroad-spectrum empirical antibiotic therapy, which further contributes to the selection of extreme drug resistance. Moreover, it comprises a relevant risk of failure to initiate adequate empirical treatment due to the fact that culture-based techniques used to identify CRE imply a 48- to 72-hour delay from blood culture collection until administration of the targeted therapy. This vicious circle is difficult to avoid and leads to increased clinical intricacy and narrowed antimicrobial therapeutic options. Because available options are extremely limited, infection prevention measures have gained outstanding importance, particularly in the phase after liver transplant requiring intense immunosuppression early on. Improving clinical outcomes is a major challenge and involves a multi-targeted approach combining strictly applied hygiene measures, active surveillance tests, the use of modern, time-saving methods of molecular biology, and enforced antibiotic stewardship. This article reviews the current literature regarding the incidence and outcome of CRE infections in LTR, and it summarises current preventive and therapeutic recommendations to minimise the threat by CRE in real-life clinical transplant settings.

* beide Autoren haben einen gleichwertigen Beitrag zur Publikation geleistet.


 
  • Literatur

  • 1 Satlin MJ, Jenkins SG, Walsh TJ. The global challenge of carbapenem-resistant Enterobacteriaceae in transplant recipients and patients with hematologic malignancies. Clin Infect Dis 2014; 58: 1274-1283
  • 2 Sievert DM, Ricks P, Edwards JR et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol 2013; 34: 1-14
  • 3 Leistner R, Schröder C, Geffers C et al. Regional distribution of nosocomial infections due to ESBL-positive Enterobacteriaceae in Germany: data from the German National Reference Center for the Surveillance of Nosocomial Infections (KISS). Clin Microbiol Infect 2014; pii: S1198-743X(14)00060-3.
  • 4 Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008; 8: 159-166
  • 5 Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 2009; 9: 228-236
  • 6 Munoz-Price LS, Poirel L, Bonomo RA et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013; 13: 785-796
  • 7 Kuehn BM. “Nightmare” bacteria on the rise in US hospitals, long-term care facilities. JAMA 2013; 309: 1573-1574
  • 8 Mouloudi E, Protonotariou E, Zagorianou A et al. Bloodstream infections caused by metallo-b-lactamase/Klebsiella pneumonia carbapenemase-producing K. pneumoniae among intensive care unit patients in Greece: risk factors for infection and impact of type of resistance on outcomes. Infect Control Hosp Epidemiol 2010; 31: 1250-1256
  • 9 Ben-David D, Kordevani R, Keller N et al. Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clin Microbiol Infect 2012; 18: 54-60
  • 10 Patel G, Huprikar S, Factor SH et al. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol 2008; 29: 1099-1106
  • 11 Zarkotou O, Pournaras S, Tselioti P et al. Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect 2011; 17: 1798-1803
  • 12 Kalpoe JS, Sonnenberg E, Factor SH et al. Mortality associated with carbapenem-resistant Klebsiella pneumoniae infections in liver transplant recipients. Liver Transpl 2012; 18: 68-74
  • 13 Lübbert C, Becker-Rux D, Rodloff AC et al. Colonization of liver transplant recipients with KPC-producing Klebsiella pneumoniae is associated with high infection rates and excess mortality: a case-control analysis. Infection 2014; 42: 309-316
  • 14 Lübbert C, Rodloff AC, Laudi S et al. Lessons learned from excess mortality associated with Klebsiella pneumoniae carbapenemase-2-producing K. pneumoniae in liver transplant recipients. Liver Transpl 2014; 20: 736-738
  • 15 Snitkin ES, Zelazny AM, Thomas PJ et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 2012; 4: 148ra116
  • 16 Mischnik A, Kaase M, Lübbert C et al. Carbapenem-resistance in Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii. Dtsch Med Wochenschr 2015; 140: 172-176
  • 17 Temkin E, Adler A, Lerner A et al. Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management. Ann N Y Acad Sci 2014; 1323: 22-42
  • 18 Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci 1980; 289: 321-331
  • 19 Kumarasamy KK, Toleman MA, Walsh TR et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 2010; 10: 597-602
  • 20 Patel G, Huprikar S, Factor SH et al. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol 2008; 29: 1099-1106
  • 21 Linares L, Cervera C, Hoyo I et al. Klebsiella pneumoniae infection in solid organ transplant recipients: epidemiology and antibiotic resistance. Transplant Proc 2010; 42: 2941-2943
  • 22 Mlynarczyk G, Kosykowska E, de Walthoffen SW et al. A threat of the Klebsiella pneumoniae carbapenemase-producing strains among transplant recipients. Transplant Proc 2011; 43: 3135-3136
  • 23 Lopez JA, Correa A, Navon-Venezia S et al. Intercontinental spread from Israel to Colombia of a KPC-3-producing Klebsiella pneumoniae strain. Clin Microbiol Infect 2011; 17: 52-56
  • 24 Bergamasco MD, Barroso BarbosaM, de Oliveira GarciaD et al. Infection with Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in solid organ transplantation. Transpl Infect Dis 2012; 14: 198-205
  • 25 Chen H, Zhang Y, Chen YG et al. Sepsis resulting from Enterobacter aerogenes resistant to carbapenems after liver transplantation. Hepatobiliary Pancreat Dis Int 2009; 8: 320-322
  • 26 Ariza-Heredia EJ, Patel R, Blumberg EA et al. Outcomes of transplantation using organs from a donor infected with Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae. Transpl Infect Dis 2012; 14: 229-36
  • 27 Piano S, Romano A, Rosi S et al. Spontaneous bacterial peritonitis due to carbapenemase-producing Klebsiella pneumoniae: the last therapeutic challenge. Eur J Gastroenterol Hepatol 2012; 24: 1234-1237
  • 28 Varghese J, Jayanthi V, Rela M. Mortality associated with carbapenem-resistant Klebsiella pneumoniae infections in liver transplant recipients. Liver Transpl 2012; 18: 1124 ; author reply 1125
  • 29 Bodro M, Sabé N, Tubau F et al. Risk factors and outcomes of bacteremia caused by drug-resistant ESKAPE pathogens in solid-organ transplant recipients. Transplantation 2013; 96: 843-849
  • 30 Clancy CJ, Chen L, Shields RK et al. Epidemiology and molecular characterization of bacteremia due to carbapenem-resistant Klebsiella pneumoniae in transplant recipients. Am J Transplant 2013; 13: 2619-2633
  • 31 Rana MM, Sturdevant M, Patel G et al. Klebsiella necrotizing soft tissue infections in liver transplant recipients: a case series. Transpl Infect Dis 2013; 15: E157-E163
  • 32 Mouloudi E, Massa E, Papadopoulos S et al. Bloodstream infections caused by carbapenemase-producing Klebsiella pneumoniae among intensive care unit patients after orthotopic liver transplantation: risk factors for infection and impact of resistance on outcomes. Transplant Proc 2014; 46: 3216-3218
  • 33 Giannella M, Morelli MC, Cristini F et al. Carbapenem-resistant Klebsiella pneumoniae colonization at liver transplantation: a management challenge. Liver Transpl 2014; 20: 631-633
  • 34 Santoro-Lopes G, de Gouvêa EF. Multidrug-resistant bacterial infections after liver transplantation: an ever-growing challenge. World J Gastroenterol 2014; 20: 6201-6210
  • 35 Matsumura Y, Tanaka M, Yamamoto M et al. High prevalence of carbapenem resistance among plasmid-mediated AmpC β-lactamase-producing Klebsiella pneumoniae during outbreaks in liver transplantation units. Int J Antimicrob Agents 2015; 45: 33-40
  • 36 Giannella M, Bartoletti M, Morelli MC et al. Risk Factors for Infection With Carbapenem-Resistant Klebsiella pneumoniae After Liver Transplantation: The Importance of Pre- and Posttransplant Colonization. Am J Transplant 2015; [Epub ahead of print]
  • 37 Mathers AJ, Cox HL, Bonatti H et al. Fatal cross infection by carbapenem-resistant Klebsiella in two liver transplant recipients. Transpl Infect Dis 2009; 11: 257-265
  • 38 Goldberg E, Bishara J, Lev S et al. Organ transplantation from a donor colonized with a multidrug-resistant organism: a case report. Transpl Infect Dis 2012; 14: 296-299
  • 39 Giani T, Conte V, Mandalà S et al. Cross-infection of solid organ transplant recipients by a multidrug-resistant Klebsiella pneumoniae isolate producing the OXA-48 carbapenemase, likely derived from a multiorgan donor. J Clin Microbiol 2014; 52: 2702-2705
  • 40 Falagas ME, Lourida P, Poulikakos P et al. Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrob Agents Chemother 2014; 58: 654-663
  • 41 Sbrana F, Malacarne P, Viaggi B et al. Carbapenem-Sparing Antibiotic Regimens for Infections Caused by Klebsiella-pneumoniae-Carbapenemase-Producing K. pneumoniae in Intensive Care Unit. Clin Infect Dis 2013; 56: 697-700
  • 42 Pogue JM, Lee J, Marchaim D et al. Incidence of and risk factors for colistin-associated nephrotoxicity in a large academic health system. Clin Infect Dis 2011; 53: 879-884
  • 43 Kubin CJ, Ellman TM, Phadke V et al. Incidence and predictors of acute kidney injury associated with intravenous polymyxin B therapy. J Infect 2012; 65: 80-87
  • 44 Garonzik SM, Li J, Thamlikitkul V et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother 2011; 55: 3284-3294
  • 45 Sandri AM, Landersdorfer CB, Jacob J et al. Population pharmacokinetics of intravenous polymyxin B in critically ill patients: implications for selection of dosage regimens. Clin Infect Dis 2013; 57: 524-531
  • 46 Hindler JA, Humphries RM. Colistin MIC variability by method for contemporary clinical isolates of multidrug-resistant gram-negative bacilli. J Clin Microbiol 2013; 51: 1678-1684
  • 47 Meletis G, Tzampaz E, Sianou E et al. Colistin heteroresistance in carbapenemase-producing Klebsiella pneumoniae. J Antimicrob Chemother 2011; 66: 946-947
  • 48 Paul M, Bishara J, Levcovich A et al. Effectiveness and safety of colistin: prospective comparative cohort study. J Antimicrob Chemother 2010; 65: 1019-1027
  • 49 MacGowan AP. Tigecycline pharmacokinetic/pharmacodynamic update. J Antimicrob Chemother 2008; 62 (Suppl. 01) i11-i16
  • 50 Prasad P, Sun J, Danner RL et al. Excess deaths associated with tigecycline after approval based on non-inferiority trials. Clin Infect Dis 2012; 54: 1699-1709
  • 51 Ramirez J, Dartois N, Gandjini H et al. Randomized phase 2 trial to evaluate the clinical efficacy of two high-dosage tigecycline regimens versus imipenem-cilastatin for treatment of hospital-acquired pneumonia. Antimicrob Agents Chemother 2013; 57: 1756-1762
  • 52 Karageorgopoulos DE, Wang R, Yu XH et al. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in gram-negative pathogens. J Antimicrob Chemother 2012; 67: 255-268
  • 53 Tumbarello M, Viale P, Viscoli C et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis 2012; 55: 943-950
  • 54 Daikos GL, Markogiannakis A. Carbapenemase-producing Klebsiella pneumoniae: (when) might we still consider treating with carbapenems?. Clin Microbiol Infect 2011; 17: 1135-1141
  • 55 Smith CR, Lipsky JJ, Laskin OL et al. Double-blind comparison of the nephrotoxicity and auditory toxicity of gentamicin and tobramycin. N Engl J Med 1980; 302: 11069
  • 56 Qureshi ZA, Paterson DL, Potoski BA et al. Treatment Outcome of Bacteremia Due to KPC-Producing Klebsiella pneumoniae: Superiority of Combination Antimicrobial Regimens. Antimicrob Agents Chemother 2012; 56: 2108-2113
  • 57 Jernigan MG, Press EG, Nguyen MH et al. The combination of doripenem and colistin is bactericidal and synergistic against colistin-resistant, carbapenemase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2012; 56: 3395-3398
  • 58 Bulik CC, Nicolau DP. Double-carbapenem therapy for carbapenemase-producing Klebisella pneumoniae. Antimicrob Agents Chemother 2011; 55: 3002-3004
  • 59 Giamarellou H, Galani L, Baziaka F et al. Effectiveness of a double- carbapenem regimen for infections in humans due to carbapenemase- producing pandrug-resistant Klebsiella pneumoniae. Antimicrob Agents Chemother 2013; 57: 2388-2390
  • 60 Ceccarelli G, Falcone M, Giordano A et al. Successful ertapenem-doripenem combination treatment of bacteremic ventilator-associated pneumonia due to colistin-resistant KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2013; 57: 2900-2901
  • 61 Kofteridis DP, Alexopoulou C, Valachis A et al. Aerosolized plus intravenous colistin versus intravenous colistin alone for the treatment of ventilator-associated pneumonia: a matched case-control study. Clin Infect Dis 2010; 51: 1238-1244
  • 62 Lu Q, Yang J, Liu Z et al. Nebulized ceftazidime and amikacin in ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Am J Respir Crit Care Med 2011; 184: 106-115
  • 63 Tumbarello M, De Pascale G, Trecarichi EM et al. Effect of aerosolized colistin as adjunctive treatment on the outcomes of microbiologically documented ventilator-associated pneumonia caused by colistin-only susceptible gram-negative bacteria. Chest 2013; 144: 1768-1775
  • 64 Centers for Disease Control and Prevention. CRE Toolkit guidance for control of carbapenem-resistant Enterobacteriaceae (CRE). Available at: 2012 http://www.cdc.gov/hai/organisms/cre/cre-toolkit/index Accessed 5 April 2015.
  • 65 Lübbert C, Faucheux S, Becker-Rux D et al. Rapid emergence of secondary resistance to gentamicin and colistin following selective digestive decontamination in patients with KPC-2-producing Klebsiella pneumoniae: a single-centre experience. Int J Antimicrob Agents 2013; 42: 565-570
  • 66 Lippmann N, Lübbert C, Kaiser T et al. Clinical epidemiology of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2014; 14: 271-272
  • 67 Aumeran C, Poincloux L, Souweine B et al. Multidrug-resistant Klebsiella pneumoniae outbreak after endoscopic retrograde cholangiopancreatography. Endoscopy 2010; 42: 895-899
  • 68 Paterson DL, Singh N, Rihs JD et al. Control of an outbreak of infection due to extended-spectrum beta-lactamase-producing Escherichia coli in a liver transplantation unit. Clin Infect Dis 2001; 33: 126-128
  • 69 van Duin D, van Delden C. Multidrug-resistant gram-negative bacteria infections in solid organ transplantation. Am J Transplant 2013; 13 (Suppl. 04) 31-41
  • 70 Bert F, Larroque B, Paugam-Burtz C et al. Pretransplant fecal carriage of extended-spectrum β-lactamase producing Enterobacteriaceae and infection after liver transplant, France. Emerg Infect Dis 2012; 18: 908-916
  • 71 Singh K, Mangold KA, Wyant K et al. Rectal screening for Klebsiella pneumoniae carbapenemases: comparison of real-time PCR and culture using two selective screening agar plates. J Clin Microbiol 2012; 50: 2596-2600
  • 72 Lübbert C, Lippmann N, Busch T et al. Long-term carriage of Klebsiella pneumoniae carbapenemase-2-producing K. pneumoniae after a large single-center outbreak in Germany. Am J Infect Control 2014; 42: 376-380
  • 73 Lübbert C, Straube L, Stein C et al. Colonization with extended-spectrum beta-lactamase (ESBL)-producing and carbapenemase-producing Enterobacteriaceae in international travelers returning to Germany. Int J Med Microbiol 2015; 305: 148-156
  • 74 Zuckerman T, Benyamini N, Sprecher H et al. SCT in patients with carbapenem resistant Klebsiella pneumoniae: a single center experience with oral gentamicin for the eradication of carrier state. Bone Marrow Transplant 2011; 46: 1226-1230
  • 75 Saidel-Odes L, Polachek H, Peled N et al. A Randomized, Double-Blind, Placebo-Controlled Trial of Selective Digestive Decontamination Using Oral Gentamicin and Oral Polymyxin E for Eradication of Carbapenem-Resistant Klebsiella pneumoniae Carriage. Infect Control Hosp Epidemiol 2012; 33: 14-19
  • 76 Halaby T, Al Naiemi N, Kluytmans J et al. Emergence of colistin resistance in Enterobacteriaceae after the introduction of selective digestive tract decontamination in an intensive care unit. Antimicrob Agents Chemother 2013; 57: 3224-3229
  • 77 Bishara J, Goldberg E, Lev S et al. The utilization of solid organs for transplantation in the setting of infection with multidrug-resistant organisms: an expert opinion. Clin Transplant 2012; 26: 811-815
  • 78 Zhanel GG, Lawson CD, Adam H et al. Ceftazidime-avibactam: a novel cephalosporin/beta-lactamase inhibitor combination. Drugs 2013; 73: 159-177
  • 79 Lucasti C, Popescu I, Ramesh MK et al. Comparative study of the efficacy and safety of ceftazidime/avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infections in hospitalized adults: results of a randomized, double-blind, phase II trial. J Antimicrob Chemother 2013; 68: 1183-1192
  • 80 Vazquez JA, Gonzalez Patzan LD, Stricklin D et al. Efficacy and safety of ceftazidime-avibactam versus imipenem-cilastatin in the treatment of complicated urinary tract infections, including acute pyelonephritis, in hospitalized adults: results of a prospective, investigator-blinded, randomized study. Curr Med Res Opin 2012; 28: 1921-1931
  • 81 Toussaint KA, Gallagher JS. β-Lactam/β-Lactamase Inhibitor Combinations: From Then to Now. Ann Pharmacother 2015; 49: 86-98
  • 82 Livermore DM, Mushtaq S, Warner M et al. Activity of aminoglycosides, including ACHN-490, against carbapenem-resistant Enterobacteriaceae. J Antimicrob Chemother 2011; 66: 48-53
  • 83 Boucher HW, Talbot GH, Benjamin Jr DK et al. 10 × ’20 progress – development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis 2013; 56: 1685-1694
  • 84 Kaase M. Bericht des nationalen Referenzzentrums für gramnegative Krankenhauserreger. Epid Bull 2014; 43: 421-425