Subscribe to RSS
DOI: 10.1055/s-0041-106952
Eigenschaften fokaler degenerativer Knorpelschäden am Kniegelenk. Eine radiologische, spektroskopische histologische und biochemische Untersuchung
Characteristics of Focal Degenerative Cartilage Lesions in the Knee Joint. A Radiologic, Spectroscopic, Histological and Biochemical StudyPublication History
Publication Date:
21 December 2015 (online)
Zusammenfassung
Zielstellung: Ziel dieser Untersuchung war es, die Defektränder von Knorpelschäden Grad IIIb der Patella und des medialen Femurkondyls, die korrespondierende Gelenkfläche und die übrigen Knorpelflächen des Kniegelenks makroskopisch, spektroskopisch und biochemisch-histologisch zu untersuchen. Dabei wurde als Nullhypothese angenommen, dass die Eigenschaften des den Defekt umgebenden Knorpels aber auch die korrespondierende Gelenkfläche und die übrigen Gelenkflächen des Kniegelenks keine Unterschiede zum Knorpel innerhalb des Defektes aufweisen
Methode: Bei 10 Patienten, bei denen fokale Knorpelschäden (Grad III b der ICRS- Klassifikation) durch autologe Knorpeltransplantation (ACT) behandelt wurden, wurden in die Studie aufgenommen. Präoperativ wurde bei allen Patienten eine Kernspintomografie (1, 5 T) durchgeführt. Die Klassifikation der Knorpelschäden im Gelenk erfolgte entsprechend den Empfehlungen der International Cartilage Repair Society (ICRS). Während der Arthroskopie wurden im Defekt selbst, im Bereich der Defektränder und an weiteren, insgesamt 14 definierten Arealen spektroskopische Untersuchungen zur Bestimmung des Degenerationsgrades des Knorpels durchgeführt. Biopsien für die Histologie und biochemische Untersuchung (Collagen II, Glycosaminoglycan, DNA) wurden aus dem Defektzentrum sowie den makroskopisch intakten erscheinenden Defekträndern entnommen.
Ergebnisse: In allen Kniegelenken fanden sich sogenannte fokale Knorpelschäden Grad III b mit intaktem Rand und intakter korrespondierende Gelenkfläche. Bei der spektroskopische Untersuchung wurden sowohl im Defekt, in den intakten erscheinenden Rändern, der korrespondierenden Gelenkfläche und allen anderen untersuchten Arealen des Knies Messwerte ermittelt, die Hinweis auf eine bereits eingetretene schwere degenerativer Veränderung im Knorpel gaben. Auch in der histologischen und biochemischen Untersuchung des Restknorpels im Defektzentrum und an den intakten erscheinenden Rändern fanden sich keine signifikanten Unterschiede.
Schlussfolgerungen: Fokale Knorpelschäden kommen sehr häufig in den Hauptbelastungszonen der Patella und des medialen Femurkondyls vor. Soweit diese Folge degenerativer Veränderungen im Kniegelenk sind, unterscheidet sich der Restknorpel im Defekt nicht von dem der Defektränder, der korrespondierenden Gelenkfläche und der anderen Knorpelflächen. Daraus kann geschlussfolgert werden, dass fokale Knorpeldefekte bei degenerativem Gelenkschaden nur ein Teilaspekt einer generellen Gelenkdegeneration sind.
Abstract
Objective: The aim of this study was to perform a macroscopic, spectroscopic and biochemical/histological examination of the defect margins of grade IIIb cartilage lesions in the patella, the medial femoral condyle, the corresponding articular surface and the remaining cartilage surfaces of the knee joint. Our null hypothesis was that there would be no difference in characteristics between the cartilage surrounding the defect, the corresponding articular surface and the remaining articular surfaces of the knee joint on the one hand and the cartilage within the defect on the other.
Method: The study included ten patients treated for focal cartilage lesions (ICRS classification grade IIIb) by autologous cartilage transplantation (ACT). All patients underwent a preoperative magnetic resonance imaging scan (1, 5 T). The articular cartilage lesions were classified pursuant to the recommendations of the International Cartilage Repair Society (ICRS). During the arthroscopic procedure, spectroscopic examinations were performed to measure the degree of cartilage degeneration in a total of 14 defined areas including the defect itself and the region of the defect margins. Biopsies for a histological and biochemical examination (collagen II, glycosaminoglycan, DNA) were taken from the centre of the defect and the defect margins that seemed to be intact on macroscopic examination.
Results: All knee joints had focal grade IIIb cartilage lesions with an intact margin and an intact corresponding articular surface. The readings obtained on spectroscopic examination both in the defect, the apparently intact margins, the corresponding articular surface and all other examined areas of the knee suggested that severe degenerative changes had already occurred in the cartilage. The histological and biochemical examinations of the residual cartilage in the centre of the defect and the apparently intact margins revealed no significant differences.
Conclusions: Focal cartilage lesions frequently occur in the main weight-bearing zones of the patella and the medial femoral condyle. If they are the result of degenerative changes in the knee joint, the residual cartilage in the defect does not differ from the cartilage of the defect margins, the corresponding articular surface and the other cartilage surfaces. This leads to the conclusion that focal cartilage defects seen in degenerative joint damage are only one aspect of general joint degeneration.
-
Literatur
- 1 Afara I, Singh S, Oloyede A. Application of near infrared (NIR) spectroscopy for determining the thickness of articular cartilage. Med Eng Phys 2013; 35: 88-95
- 2 Afara IO, Singh S, Oloyede A. Load-unloading response of intact and artificially degraded articular cartilage correlated with near infrared (NIR) absorption spectra. J Mech Behav Biomed Mater 2013; 20: 249-258
- 3 Armstrong CG, Mow VC. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J Bone Joint Surg Am 1982; 64: 88-94
- 4 Aroen A, Loken S, Heir S et al. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 2004; 32: 211-215
- 5 Ayral X, Gueguen A, Ike RW et al. Inter-observer reliability of the arthroscopic quantification of chondropathy of the knee. Osteoarthritis Cartilage 1998; 6: 160-166
- 6 Beattie KA, Boulos P, Pui M et al. Abnormalities identified in the knees of asymptomatic volunteers using peripheral magnetic resonance imaging. Osteoarthritis Cartilage 2005; 13: 181-186
- 7 Bollett AJ, Nance JL. Biochemical findings in normal and osteoarthritic articular cartilage. 2. Chondroitin sulfate concentration and chain length, water and ash content. J Clin Invest 1966; 45: 1170-1177
- 8 Brismar BH, Wredmark T, Movin T et al. Observer reliability in the arthroscopic classification of osteoarthritis of the knee. J Bone Joint Surg Br 2002; 84: 42-47
- 9 Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 2003; 85-A (Suppl. 02) 58-69
- 10 Brown CP, Bowden JC, Rintoul L et al. Diffuse reflectance near infrared spectroscopy can distinguish normal from enzymatically digested cartilage. Phys Med Biol 2009; 54: 5579-5594
- 11 Brown CP, Jayadev C, Glyn-Jones S et al. Characterization of early stage cartilage degradation using diffuse reflectance near infrared spectroscopy. Phys Med Biol 2011; 56: 2299-2307
- 12 Brown TD, Shaw DT. In vitro contact stress distribution on the femoral condyles. J Orthop Res 1984; 2: 190-199
- 13 Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 1998; 47: 477-486
- 14 Charlebois M, McKee MD, Buschmann MD. Nonlinear tensile properties of bovine articular cartilage and their variation with age and depth. J Biomech Eng 2004; 126: 129-137
- 15 Ciccotti MC, Kraeutler MJ, Austin LS et al. The prevalence of articular cartilage changes in the knee joint in patients undergoing arthroscopy for meniscal pathology. Arthroscopy 2012; 28: 1437-1444
- 16 Curl WW, Krome J, Gordon ES et al. Cartilage injuries: a review of 31516 knee arthroscopies. Arthroscopy 1997; 13: 456-460
- 17 Ding C, Cicuttini F, Scott F et al. Association between age and knee structural change: a cross sectional MRI based study. Ann Rheum Dis 2005; 64: 549-555
- 18 Duda GN, Kleemann RU, Bluecher U et al. A new device to detect early cartilage degeneration. Am J Sports Med 2004; 32: 693-698
- 19 Eckstein F, Gavazzeni A, Sittek H et al. Determination of knee joint cartilage thickness using three-dimensional magnetic resonance chondro-crassometry (3D MR-CCM). Magn Reson Med 1996; 36: 256-265
- 20 Farndale RW, Buttle DJ, Barrett AJ. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 1986; 883: 173-177
- 21 Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci 2010; 1192: 230-237
- 22 Hanifi A, McCarthy H, Roberts S et al. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues. PLoS One 2013; 8: e64822
- 23 Hayashi D, Felson DT, Niu J et al. Pre-radiographic osteoarthritic changes are highly prevalent in the medial patella and medial posterior femur in older persons: Framingham OA study. Osteoarthritis Cartilage 2013; 27: 76-83
- 24 Henson FM, Vincent TA. Alterations in the vimentin cytoskeleton in response to single impact load in an in vitro model of cartilage damage in the rat. BMC Musculoskelet Disord 2008; 9: 94
- 25 Hjelle K, Solheim E, Strand T et al. Articular cartilage defects in 1000 knee arthroscopies. Arthroscopy 2002; 18: 730-734
- 26 Hofmann GO, Marticke J, Grossstuck R et al. Detection and evaluation of initial cartilage pathology in man: A comparison between MRT, arthroscopy and near-infrared spectroscopy (NIR) in their relation to initial knee pain. Pathophysiology 2010; 17: 1-8
- 27 Jaffe FF, Mankin HJ, Weiss C et al. Water binding in the articular cartilage of rabbits. J Bone Joint Surg Am 1974; 56: 1031-1039
- 28 Jerosch J, Castro WH, de Waal Malefijt MC et al. Interobserver variation in diagnostic arthroscopy of the knee joint. "How really objective are arthroscopic findings?". Unfallchirurg 1997; 100: 782-786
- 29 Johansson A, Kuiper JH, Sundqvist T et al. Spectroscopic measurement of cartilage thickness in arthroscopy: ex vivo validation in human knee condyles. Arthroscopy 2012; 28: 1513-1523
- 30 Johansson A, Sundqvist T, Kuiper JH et al. A spectroscopic approach to imaging and quantification of cartilage lesions in human knee joints. Phys Med Biol 2011; 56: 1865-1878
- 31 Joseph GB, Baum T, Alizai H et al. Baseline mean and heterogeneity of MR cartilage T2 are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3 years – data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 2012; 20: 727-735
- 32 Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 1957; 16: 494-502
- 33 Krampla W, Roesel M, Svoboda K et al. MRI of the knee: how do field strength and radiologist's experience influence diagnostic accuracy and interobserver correlation in assessing chondral and meniscal lesions and the integrity of the anterior cruciate ligament?. Eur Radiol 2009; 19: 1519-1528
- 34 Lotz M, Loeser RF. Effects of aging on articular cartilage homeostasis. Bone 2012; 51: 241-248
- 35 Mankin HJ, Lippiello L. The glycosaminoglycans of normal and arthritic cartilage. J Clin Invest 1971; 50: 1712-1719
- 36 Marticke JK, Hosselbarth A, Hoffmeier KL et al. How do visual, spectroscopic and biomechanical changes of cartilage correlate in osteoarthritic knee joints?. Clin Biomech (Bristol, Avon) 2010; 25: 332-340
- 37 McNicholas MJ, Brooksbank AJ, Walker CM. Observer agreement analysis of MRI grading of knee osteoarthritis. J R Coll Surg Edinb 1999; 44: 31-33
- 38 Milentijevic D, Torzilli PA. Influence of stress rate on water loss, matrix deformation and chondrocyte viability in impacted articular cartilage. J Biomech 2005; 38: 493-502
- 39 Niemeyer P, Pestka JM, Erggelet C et al. Comparison of arthroscopic and open assessment of size and grade of cartilage defects of the knee. Arthroscopy 2011; 27: 46-51
- 40 Padalkar MV, Spencer RG, Pleshko N. Near infrared spectroscopic evaluation of water in hyaline cartilage. Ann Biomed Eng 2013; 41: 2426-2436
- 41 Proffen BL, McElfresh M, Fleming BC et al. A comparative anatomical study of the human knee and six animal species. Knee 2012; 19: 493-499
- 42 Schmid MR, Pfirrmann CW, Koch P et al. Imaging of patellar cartilage with a 2D multiple-echo data image combination sequence. Am J Roentgenol 2005; 184: 1744-1748
- 43 Setton LA, Elliott DM, Mow VC. Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthritis Cartilage 1999; 7: 2-14
- 44 Spahn G, Kahl E, Klinger HM et al. Mechanical behavior of intact and low-grade degenerated cartilage. Biomed Tech (Berl) 2007; 52: 216-222
- 45 Spahn G, Plettenberg H, Kahl E et al. Near-infrared (NIR) spectroscopy. A new method for arthroscopic evaluation of low grade degenerated cartilage lesions. Results of a pilot study. BMC Musculoskelet Disord 2007; 8: 47
- 46 Spahn G, Plettenberg H, Nagel H et al. Evaluation of cartilage defects with near-infrared spectroscopy (NIR): an ex vivo study. Med Eng Phys 2008; 30: 285-292
- 47 Spahn G, Wittig R. Biomechanical properties (compressive strength and compressive pressure at break) of hyaline cartilage under axial load. Zentralbl Chir 2003; 128: 78-82
- 48 Stahl R, Luke A, Li X et al. T1rho, T2 and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients – a 3.0-Tesla MRI study. Eur Radiol 2009; 19: 132-143
- 49 Stefanik JJ, Niu J, Gross KD et al. Using magnetic resonance imaging to determine the compartmental prevalence of knee joint structural damage. Osteoarthritis Cartilage 2013; 21: 695-699
- 50 Stegemann H. Microdetermination of hydroxyproline with chloramine-T and p-dimethylaminobenzaldehyde. Hoppe Seylers Z Physiol Chem 1958; 311: 41-45
- 51 Stehling C, Lane NE, Nevitt MC et al. Subjects with higher physical activity levels have more severe focal knee lesions diagnosed with 3T MRI: analysis of a non-symptomatic cohort of the osteoarthritis initiative. Osteoarthritis Cartilage 2010; 18: 776-786
- 52 Stockwell RA. The cell density of human articular and costal cartilage. J Anat 1967; 101: 753-763
- 53 Stockwell RA. The interrelationship of cell density and cartilage thickness in mammalian articular cartilage. J Anat 1971; 109: 411-421
- 54 Tiderius CJ, Tjornstrand J, Akeson P et al. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): intra- and interobserver variability in standardized drawing of regions of interest. Acta Radiol 2004; 45: 628-634
- 55 Torzilli PA, Rose DE, Dethmers DA. Equilibrium water partition in articular cartilage. Biorheology 1982; 19: 519-537
- 56 Uchio Y, Ochi M, Adachi N et al. Arthroscopic assessment of human cartilage stiffness of the femoral condyles and the patella with a new tactile sensor. Med Eng Phys 2002; 24: 431-435
- 57 Vallotton JA, Meuli RA, Leyvraz PF et al. Comparison between magnetic resonance imaging and arthroscopy in the diagnosis of patellar cartilage lesions: a prospective study. Knee Surg Sports Traumatol Arthrosc 1995; 3: 157-162
- 58 Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25124 knee arthroscopies. Knee 2007; 14: 177-182