Subscribe to RSS
DOI: 10.1055/s-0041-109514
Dose Monitoring in Radiology Departments: Status Quo and Future Perspectives
Dosismonitoring in der Radiologie: Status quo und ZukunftsperspektivenPublication History
30 August 2015
21 October 2015
Publication Date:
28 April 2016 (online)
Abstract
The number of computed tomography examinations has continuously increased over the last decades and accounts for a major part of the collective radiation dose from medical investigations. For purposes of quality assurance in modern radiology a systematic monitoring and analysis of dose related data from radiological examinations is mandatory. Various ways of collecting dose data are available today, for example the Digital Imaging and Communication in Medicine – Structured Report (DICOM-SR), optical character recognition and DICOM-modality performed procedure steps (MPPS). The DICOM-SR is part of the DICOM-standard and provides the DICOM-Radiation Dose Structured Report, which is an easily applicable and comprehensive solution to collect radiation dose parameters. This standard simplifies the process of data collection and enables comprehensive dose monitoring. Various commercial dose monitoring software devices with varying characteristics are available today. In this article, we discuss legal obligations, various ways to monitor dose data, current dose monitoring software solutions and future perspectives in regard to the EU Council Directive 2013/59/EURATOM.
Key Points:
• Automated, systematic dose monitoring is an important element in quality assurance of radiology departments.
• DICOM-RDSR-capable CT scanners facilitate the monitoring of dose data.
• A variety of commercial and non-commercial dose monitoring software tools are available today.
• Successful dose monitoring requires comprehensive infrastructure for monitoring, analysing and optimizing radiation exposure.
Citation Format:
• Boos J, Meineke A, Bethge OT et al. Dose Monitoring in Radiology Departments: Status Quo and Future Perspectives. Fortschr Röntgenstr 2016; 188: 443 – 450
Zusammenfassung
Die Zahl der Computertomografieuntersuchungen nimmt in den letzten Dekaden kontinuierlich zu und ist verantwortlich für einen Großteil der medizinisch bedingten Exposition der Bevölkerung mit ionisierender Strahlung. Im Sinne der Qualitätssicherung ist eine kontinuierliche Auswertung der dosisrelevanten Daten von radiologischen Untersuchungen unabdingbar. Verschiedene Wege der Dosiserfassung stehen heute zur Verfügung, so z. B. der Digital Imaging and Communication in Medicine-Structured Report (DICOM-SR), die optische Bilderkennung oder DICOM – Modality performed procedure steps (MPPS). Der DICOM-SR ist Teil des DICOM-Standards und stellt mit dem DICOM-Radiation Dose Structured Report (DICOM-RDSR) eine einfache und zuverlässige Lösung zur Erfassung der dosisrelevanten Daten dar, sodass ein standardisiertes und umfassendes automatisches Dosismonitoring erleichtert wird. Eine Vielzahl an kommerziellen Softwarelösungen mit unterschiedlichem Funktionsumfang ist inzwischen verfügbar. Dieser Artikel gibt einen Überblick über die aktuellen gesetzlichen Voraussetzungen, die Möglichkeiten zur Erfassung der relevanten Dosisdaten in radiologischen Abteilungen, aktuell erhältliche Softwarelösungen und zukünftige Perspektiven im Hinblick auf die EU-Grundnorm 2013/59/EURATOM.
-
References
- 1 United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2008 Report to the General Assembly, with scientific annexes Volume I: Report to the General Assembly, Scientific Annexes A and B.
- 2 Boos J, Kröpil P, Klee D et al. Evaluation of the impact of organ-specific dose reduction on image quality in pediatric chest computed tomography. Pediatr Radiol 2014; 44: 1065-1069
- 3 Bundesamt für Strahlenschutz (BfS). Jahresbericht 2010. 2011 http://doris.bfs.de/jspui/handle/urn:nbn:de:0221-201109056248 Accessed 15.8.2015
- 4 Smith-Bindman R, Miglioretti DL, Johnson E et al. Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996–2010. JAMA 2012; 307: 2400-2409
- 5 The Council of the European Union. Council Directive 97/43/Euratom of 30 June 1997 on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure, and repealing Directive Euratom. 1997
- 6 Schindera ST, Nauer C, Treier R et al. Strategies for reducing the CT radiation dose. Radiol 2010; 50: 1120-1122–1127
- 7 Lee SH, Kim MJ, Yoon CS et al. Radiation dose reduction with the adaptive statistical iterative reconstruction (ASIR) technique for chest CT in children: an intra-individual comparison. Eur J Radiol 2012; 81: e938-e943
- 8 Kalra MK, Maher MM, Toth TL et al. Comparison of Z-axis automatic tube current modulation technique with fixed tube current CT scanning of abdomen and pelvis. Radiology 2004; 232: 347-353
- 9 Kalra MK, Maher MM, Toth TL et al. Techniques and applications of automatic tube current modulation for CT. Radiology 2004; 233: 649-657
- 10 Lurz M, Lell MM, Wuest W et al. Automated tube voltage selection in thoracoabdominal computed tomography at high pitch using a third-generation dual-source scanner: image quality and radiation dose performance. Invest Radiol 2015; 50: 352-360
- 11 Schimmöller L, Lanzman RS, Dietrich S et al. Evaluation of automated attenuation-based tube potential selection in combination with organ-specific dose reduction for contrast-enhanced chest CT examinations. Clin Radiol 2014; 69: 721-726
- 12 Khawaja RDA, Singh S, Madan R et al. Ultra low-dose chest CT using filtered back projection: comparison of 80-, 100- and 120 kVp protocols in a prospective randomized study. Eur J Radiol 2014; 83: 1934-1944
- 13 Bundesamt für Strahlenschutz. Bekanntmachung der aktualisierten diagnostischen Referenzwerte für diagnostische und interventionelle Röntgenuntersuchungen. 2010 http://www.bfs.de/de/ion/medizin/referenzwerte02.pdf Accessed 15.8.2015
- 14 European Commission. Diagnostic Reference Levels in Thirty – six European Countries. 2015 https://ec.europa.eu/energy/sites/ener/files/documents/RP180 part2.pdf Accessed 15.8.2015
- 15 Bundesministerium für Justiz und Verbraucherschutz. Verordnung über den Schutz vor Schäden durch Röntgenstrahlen (Röntgenverordnung – RöV) §28 Aufzeichnungspflichten, Röntgenpass. http://www.bfs.de/de/ion/medizin/referenzwerte02.pdf Accessed 15.8.2015
- 16 European Council. Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom – CELEX-32013L0059-EN-TXT.pdf.
- 17 Verius M. Dose management in radiology : Review of the technological status. Radiol 2015; 55: 673-681
- 18 Sechopoulos I, Trianni A, Peck D. The DICOM Radiation Dose Structured Report: What It Is and What It Is Not. J Am Coll Radiol 2015; 12: 712-713
- 19 Boos J, Lanzman RS, Meineke A et al. Dose monitoring using the DICOM structured report: assessment of the relationship between cumulative radiation exposure and BMI in abdominal CT. Clin Radiol 2015; 70: 176-182
- 20 Noumeir R. Benefits of the DICOM structured report. J Digit Imaging 2006; 19: 295-306
- 21 Noël PB, Renger B, Fiebich M et al. Does iterative reconstruction lower CT radiation dose: evaluation of 15000 examinations. PloS One 2013; 8: e81141
- 22 Noumeir R. Benefits of the DICOM modality performed procedure step. J Digit Imaging 2005; 18: 260-269
- 23 Cook TS, Zimmerman SL, Steingall SR et al. RADIANCE: An automated, enterprise-wide solution for archiving and reporting CT radiation dose estimates. Radiogr Rev Publ Radiol Soc N Am Inc 2011; 31: 1833-1846
- 24 Jahnen A, Kohler S, Hermen J et al. Automatic computed tomography patient dose calculation using DICOM header metadata. Radiat Prot Dosimetry 2011; 147: 317-320
- 25 Tsalafoutas IA, Metallidis SI. A method for calculating the dose length product from CT DICOM images. Br J Radiol 2011; 84: 236-243
- 26 Talati RK, Dunkin J, Parikh S et al. Current methods of monitoring radiation exposure from CT. J Am Coll Radiol 2013; 10: 702-707
- 27 National Electrical Manufacturers Asociation. Digital Imaging and Communications in Medicine, ISO 12052. https://www.iso.org/obp/ui/#iso:std:iso:12052:ed-1:v1:en Accessed 22.11.2015
- 28 Hackländer PDT. Strukturierte Befundung in der Radiologie. Radiol 2013; 53: 613-617
- 29 Treichel T, Liebmann P, Burgert O et al. Applicability of DICOM structured reporting for the standardized exchange of implantation plans. Int J Comput Assist Radiol Surg 2010; 5: 1-9
- 30 Brook OR, Brook A, Vollmer CM et al. Structured reporting of multiphasic CT for pancreatic cancer: potential effect on staging and surgical planning. Radiology 2015; 274: 464-472
- 31 Zhang D, Savage CA, Li X et al. Data-driven CT protocol review and management – experience from a large academic hospital. J Am Coll Radiol 2015; 12: 267-272
- 32 American College of Radiology. Dose Index Registry – American College of Radiology. http://www.acr.org/Quality-Safety/National-Radiology-Data-Registry/Dose-Index-Registry Accessed 15.8.2015
- 33 Mabotuwana T, Lee MC, Cohen-Solal EV et al. Mapping institution-specific study descriptions to RadLex Playbook entries. J Digit Imaging 2014; 27: 321-330
- 34 Radiological Society of North America (RSNA). Information about RadLex Playbook. http://playbook.radlex.org/playbook/SearchRadlexAction Accessed 16.8.2015
- 35 Scranton Gillette Communications. Radiation Dose Management Comparison Chart. http://utilities.scrantongillette.com/email_images/radiationdosemanagementpochart_itn0314.pdf Accessed 16.8.2015
- 36 American Association of Physicists in Medicine. The Report of AAPM Task Group 204. Size-Specific Dose Estimates (SSDE) in Pediatric and Adult Body CT Examinations. 2011 https://www.aapm.org/pubs/reports/RPT_204.pdf Accessed 22.11.2015
- 37 American Association of Physicists in Medicine. The Report of AAPM Task Group 220. Use of Water Equivalent Diameter for Calculating Patient Size and Size-Specific Dose Estimates (SSDE) in CT. 2014 https://www.aapm.org/pubs/reports/RPT_220.pdf Accessed 15.8.2015
- 38 KLAS. Radiology Dose Monitoring Solutions 2014, Perception Study April 2014. http://www.klasresearch.com/News/PressRoom/2014/Dose Monitoring
- 39 McCollough CH. CT dose: how to measure, how to reduce. Health Phys 2008; 95: 508-517
- 40 Jungmann F, Pinto dos Santos D, Hempel J et al. Registration and monitoring of radiation exposure from radiological imaging. Radiol 2013; 53: 535-538
- 41 TÜV-Süd Life Service GmbH. IT-gestütztes Verfahren zur Erfassung von Untersuchungsparametern. http://www.tuev-sued.de/uploads/images/1378297116406748060167/informationen-zu-iveu.pdf Accessed 16.8.2015
- 42 TÜV-Süd Life Service GmbH. Download der IVEU – Software Version 1.0. http://www.tuev-sued.de/geschaeftskunden/aerztliche-stelle-hessen/newsletter/newsletter-archiv/januar-2015 Accessed 16.8.2015
- 43 Hermen J, Jahnen A, Kolodziej M et al. IVEU: IT-based collection and reporting of radiological examination parameters. Radiat Prot Dosimetry 2015; 165: 57-61
- 44 Smith-Bindman R, Moghadassi M, Wilson N et al. Radiation Doses in Consecutive CT Examinations from Five University of California Medical Centers. Radiology 2015; 277: 134-141
- 45 The Joint Commission. Accreditation, Health Care, Certification|Joint Commission. http://www.jointcommission.org/ Accessed 16.8.2015
- 46 Driesser I, Reinhold F, Reinsberger H. “teamplay Dose White Paper”. Siemens AG; 2015 https://health.siemens.com/teamplay/assets/Uploads/Downloads/siemens-teamplay-dose-whitepaper.pdf Accessed 16.8. 2015