RSS-Feed abonnieren
DOI: 10.1055/s-0041-109537
Funktionelles Mapping
Publikationsverlauf
Publikationsdatum:
05. August 2016 (online)
Zusammenfassung
Das Resektionsausmaß bestimmt bei dem Großteil der intrazerebralen Raumforderungen die Prognose. Allerdings schränkt die Nähe zu sogenannten eloquenten Hirnregionen die chirurgischen Möglichkeiten oft ein und erhöht das Risiko resektionsbedingter Defizite. Daher ist die Lokalisierung von funktionell eloquentem Kortex und zugehöriger subkortikaler Leitungsbahnen wichtig, um das Resektionsausmaß und das funktionelle Ergebnis zu verbessern. Verschiedene nichtinvasive Techniken lassen dies bereits präoperativ zu, wie funktionelles MRT (fMRT), diffusion tensor imaging fiber tracking (DTI FT) und neurophysiologische Methoden wie die Magnetenzephalografie (MEG) und die navigierte transkranielle Magnetstimulation (nTMS). Mit Hilfe dieser Methoden können die Operationsindikation und der operative Zugangsweg individuell angepasst werden. Intraoperativ erlauben es die direkte kortikale Stimulation (DCS) und die subkortikale Stimulation (SCS) nochmals, zu jeder Zeit die präoperativen Daten zu verifizieren. Durch den kombinierten Einsatz dieser Techniken konnte bereits gezeigt werden, dass das Resektionsausmaß und das funktionelle Ergebnis verbessert werden.
-
Literatur
- 1 Jakola AS, Myrmel KS, Kloster R et al. Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA 2012; 308: 1881-1888
- 2 Ius T, Angelini E, Thiebaut de Schotten M et al. Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: Towards a „minimal common brain“. Neuroimage 2011; 56: 992-1000
- 3 Krieg SM, Schnurbus L, Shiban E et al. Surgery of highly eloquent gliomas primarily assessed as non-resectable: risks and benefits in a cohort study. BMC Cancer 2013; 13: 51
- 4 De Witt Hamer PC, Robles SG, Zwinderman AH et al. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol 2012; 30: 2559-2565
- 5 Roux FE, Boulanouar K, Ranjeva JP et al. Usefulness of motor functional MRI correlated to cortical mapping in Rolandic low-grade astrocytomas. Acta neurochirurgica 1999; 141: 71-79
- 6 Tarapore PE, Tate MC, Findlay AM et al. Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg 2012; 117: 354-362
- 7 Fujiwara N, Sakatani K, Katayama Y et al. Evoked-cerebral blood oxygenation changes in false-negative activations in BOLD contrast functional MRI of patients with brain tumors. Neuroimage 2004; 21: 1464-1471
- 8 Giussani C, Roux FE, Ojemann J et al. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery 2010; 66: 113-120
- 9 Bello L, Gambini A, Castellano A et al. Motor and language DTI Fiber Tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage 2008; 39: 369-382
- 10 Wu JS, Zhou LF, Tang WJ et al. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery 2007; 61: 935-948; discussion 48–49
- 11 Nimsky C, Ganslandt O, Hastreiter P et al. Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery 2007; 61: 178-185; discussion 86
- 12 Simos PG, Papanicolaou AC, Breier JI et al. Localization of language-specific cortex by using magnetic source imaging and electrical stimulation mapping. J Neurosurg 1999; 91: 787-796
- 13 Schiffbauer H, Ferrari P, Rowley HA et al. Functional activity within brain tumors: a magnetic source imaging study. Neurosurgery 2001; 49: 1313-1320; discussion 20–21
- 14 Tarapore PE, Martino J, Guggisberg AG et al. Magnetoencephalographic imaging of resting-state functional connectivity predicts postsurgical neurological outcome in brain gliomas. Neurosurgery 2012; 71: 1012-1022
- 15 Krieg SM, Tarapore PE, Picht T et al. Optimal timing of pulse onset for language mapping with navigated repetitive transcranial magnetic stimulation. Neuroimage 2014; 100: 219-236
- 16 Frey D, Schilt S, Strack V et al. Navigated transcranial magnetic stimulation improves the treatment outcome in patients with brain tumors in motor eloquent locations. Neuro Oncol 2014; 16: 1365-1372
- 17 Takahashi S, Vajkoczy P, Picht T. Navigated transcranial magnetic stimulation for mapping the motor cortex in patients with rolandic brain tumors. Neurosurg Focus 2013; 34: E3
- 18 Krieg SM, Buchmann NH, Gempt J et al. Diffusion tensor imaging fiber tracking using navigated brain stimulation – a feasibility study. Acta Neurochir (Wien) 2012; 154: 555-563
- 19 Frey D, Strack V, Wiener E et al. A new approach for corticospinal tract reconstruction based on navigated transcranial stimulation and standardized fractional anisotropy values. Neuroimage 2012; 62: 1600-1609
- 20 Sollmann N, Giglhuber K, Tussis L et al. nTMS-based DTI fiber tracking for language pathways correlates with language function and aphasia - A case report. Clin Neurol Neurosurg 2015; 136: 25-28
- 21 Talacchi A, Santini B, Casartelli M et al. Part II: language and cognitive mapping. Funct Neurol 2013; 28: 223-229
- 22 Talacchi A, Santini B, Casagrande F et al. Awake surgery between art and science. Part I: clinical and operative settings. Funct Neurol 2013; 28: 205-221
- 23 Hervey-Jumper SL, Li J, Lau D et al. Awake craniotomy to maximize glioma resection: methods and technical nuances over a 27-year period. J Neurosurg 2015; 123: 325-339
- 24 Duffau H, Lopes M, Arthuis F et al. Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985–96) and with (1996–2003) functional mapping in the same institution. J Neurol Neurosurg Psychiatry 2005; 76: 845-851
- 25 Szelenyi A, Bello L, Duffau H et al. Intraoperative electrical stimulation in awake craniotomy: methodological aspects of current practice. Neurosurg Focus 2010; 28: E7
- 26 Kombos T, Suss O. Neurophysiological basis of direct cortical stimulation and applied neuroanatomy of the motor cortex: a review. Neurosurg Focus 2009; 27: E3
- 27 Ottenhausen M, Krieg SM, Meyer B et al. Functional preoperative and intraoperative mapping and monitoring: increasing safety and efficacy in glioma surgery. Neurosurg Focus 2015; 38: E3
- 28 Raabe A, Beck J, Schucht P et al. Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: evaluation of a new method. J Neurosurg 2014; 120: 1015-1024
- 29 Szelenyi A, Senft C, Jardan M et al. Intra-operative subcortical electrical stimulation: a comparison of two methods. Clin Neurophysiol (official journal of the International Federation of Clinical Neurophysiology) 2011; 122: 1470-1475
- 30 Bello L, Riva M, Fava E et al. Tailoring neurophysiological strategies with clinical context enhances resection and safety and expands indications in gliomas involving motor pathways. Neuro Oncol 2014; 16: 1110-1128
- 31 Duffau H, Moritz-Gasser S, Mandonnet E. A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Language 2014; 131: 1-10