Subscribe to RSS
DOI: 10.1055/s-0041-109631
Balancing viral replication in spleen and liver determines the outcome of systemic virus infection
Das Verhältnis von Virusreplikation in Leber und Milz beeinflusst systemische Virus-induzierte ErkrankungenPublication History
16 September 2015
16 November 2015
Publication Date:
14 December 2015 (online)
Abstract
The innate immune system limits virus replication during systemic infection by producing type I interferons (IFN-I) but still has to allow viral replication to achieve maximal innate and adaptive immune activation. Some spleen and lymph node resident antigen presenting cells (APCs) show limited response to IFN-I due to expression of the endogenous inhibitor of IFN-I signaling, Usp18. Therefore, virus in this spleen niche replicates despite high levels of IFN-I. This enforced viral replication leads to an exorbitant propagation of viral antigens and viral RNA. Viral antigen leads to massive activation of the adaptive immune system, while viral RNA to activated innate immunity. In contrast to these APCs, liver resident Kupffer cells, take up most of the systemic virus and suppress its replication in response to IFN-I. In addition, virus specific CD8 + T cells which are primed in the spleen migrate to the liver and kill virus infected cells. In this review we discuss the different mechanisms, which influence immune activation in spleen and antiviral mechanisms in the liver and how they determine the outcome of virus infection.
Zusammenfassung
Während einer systemischen Infektion begrenzt das angeborene Immunsystem die Ausbreitung des Virus. Typ-I-Interferon (IFN-I) ist eines der wichtigsten Zytokine, das die Replikation von Viren in Körperzellen hemmt und somit die Ausbreitung verhindert. Trotz hoher IFN-I-Konzentration kann es dennoch zur Virusreplikation in Milz und Lymphknoten kommen. Spezialisierte Antigen-präsentierende Zellen (APZ), die Usp18 exprimieren, das die IFN-I-Wirkung blockiert, replizieren Viren, was zur massiven Produktion von viraler RNS und Antigenen führt. Virale RNS aktiviert angeborene Immunzellen, während virale Antigene zu massiver Aktivierung des adaptiven Immunsystems führen. Im Gegensatz zu APZ in der Milz reagieren leberansässige Makrophagen, sogenannte Kupffer-ZeIlen, sehr stark auf IFN-I und supprimieren somit die Virusreplikation. Damit kommt es in der Milz zur starken Immunaktivierung, während die Leber systemische Viruspartikel aufnimmt und deren Vermehrung inhibiert. Immunzellen, die in der Milz aktiviert werden, wandern von dort häufig in die Leber, um die Ausbreitung des Virus zu verhindern. In dieser Übersichtsarbeit diskutieren wir die verschiedenen Mechanismen, die die Aktivierung des Immunsystems beeinflussen.
-
References
- 1 Lang PA, Recher M, Haussinger D et al. Genes determining the course of virus persistence in the liver: lessons from murine infection with lymphocytic choriomeningitis virus. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology 2010; 26: 263-272
- 2 Rouse BT, Sehrawat S. Immunity and immunopathology to viruses: what decides the outcome? Nature reviews. Immunology 2010; 10: 514-526
- 3 Foxman EF, Iwasaki A. Genome-virome interactions: examining the role of common viral infections in complex disease. Nature reviews. Microbiology 2011; 9: 254-264
- 4 Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004; 5: 987-995
- 5 Lang KS, Recher M, Junt T et al. Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nat Med 2005; 11: 138-145
- 6 Lanzavecchia A, Sallusto F. Antigen decoding by T lymphocytes: from synapses to fate determination. Nat Immunol 2001; 2: 487-492
- 7 Zinkernagel RM, Ehl S, Aichele P et al. Antigen localisation regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity. Immunol Rev 1997; 156: 199-209
- 8 Bonilla WV, Frohlich A, Senn K et al. The alarmin interleukin-33 drives protective antiviral CD8(+) T cell responses. Science 2012; 335: 984-989
- 9 McNab F, Mayer-Barber K, Sher A et al. Type I interferons in infectious disease. Nat Rev Immunol 2015; 15: 87-103
- 10 Cervantes-Barragan L, Lewis KL, Firner S et al. Plasmacytoid dendritic cells control T-cell response to chronic viral infection. Proc Natl Acad Sci U S A 2012; 109: 3012-3017
- 11 Cervantes-Barragan L, Zust R, Weber F et al. Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon. Blood 2007; 109: 1131-1137
- 12 Honda K, Yanai H, Negishi H et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005; 434: 772-777
- 13 Zinkernagel RM, Pfau CJ, Hengartner H et al. Susceptibility to murine lymphocytic choriomeningitis maps to class I MHC genes--a model for MHC/disease associations. Nature 1985; 316: 814-817
- 14 Zinkernagel RM, Haenseler E, Leist T et al. T cell-mediated hepatitis in mice infected with lymphocytic choriomeningitis virus. Liver cell destruction by H-2 class I-restricted virus-specific cytotoxic T cells as a physiological correlate of the 51Cr-release assay?. J Exp Med 1986; 164: 1075-1092
- 15 Guidotti LG, Inverso D, Sironi L et al. Immunosurveillance of the liver by intravascular effector CD8(+) T cells. Cell 2015; 161: 486-500
- 16 Lang PA, Cervantes-Barragan L, Verschoor A et al. Hematopoietic cell-derived interferon controls viral replication and virus-induced disease. Blood 2009; 113: 1045-1052
- 17 Malakhov MP, Malakhova OA, Kim KI et al. UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J Biol Chem 2002; 277: 9976-9981
- 18 Ritchie KJ, Hahn CS, Kim KI et al. Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nat Med 2004; 10: 1374-1378
- 19 Honke N, Shaabani N, Cadeddu G et al. Enforced viral replication activates adaptive immunity and is essential for the control of a cytopathic virus. Nat Immunol 2012; 13: 51-57
- 20 Honke N, Shaabani N, Zhang DE et al. Usp18 driven enforced viral replication in dendritic cells contributes to break of immunological tolerance in autoimmune diabetes. PLoS Pathog 2013; 9 e1003650
- 21 Gordon S, Crocker PR, Morris L et al. Localization and function of tissue macrophages. Ciba Found Symp 1986; 118: 54-67
- 22 Kordes C, Haussinger D. Hepatic stem cell niches. J Clin Invest 2013; 123: 1874-1880
- 23 Reinehr R, Haussinger D. CD95 death receptor and epidermal growth factor receptor (EGFR) in liver cell apoptosis and regeneration. Arch Biochem Biophys 2012; 518: 2-7
- 24 Lang PA, Recher M, Honke N et al. Tissue macrophages suppress viral replication and prevent severe immunopathology in an interferon-I-dependent manner in mice. Hepatology 2010; 52: 25-32
- 25 Hume DA, Gordon S. Mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Identification of resident macrophages in renal medullary and cortical interstitium and the juxtaglomerular complex. J Exp Med 1983; 157: 1704-1709
- 26 Hume DA, Perry VH, Gordon S. The mononuclear phagocyte system of the mouse defined by immunohistochemical localisation of antigen F4/80: macrophages associated with epithelia. Anat Rec 1984; 210: 503-512
- 27 Cervantes-Barragan L, Kalinke U, Zust R et al. Type I IFN-mediated protection of macrophages and dendritic cells secures control of murine coronavirus infection. J Immunol 2009; 182: 1099-1106
- 28 Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 2005; 5: 215-229
- 29 Takahashi K, Asabe S, Wieland S et al. Plasmacytoid dendritic cells sense hepatitis C virus-infected cells, produce interferon, and inhibit infection. Proc Natl Acad Sci U S A 2010; 107: 7431-7436
- 30 Takahashi K, Asabe S, Wieland S et al. Plasmacytoid dendritic cells sense hepatitis C virus-infected cells, produce interferon, and inhibit infection. P Natl Acad Sci USA 2010; 107: 7431-7436
- 31 Biron CA, Nguyen KB, Pien GC et al. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 1999; 17: 189-220
- 32 Vivier E, Tomasello E, Baratin M et al. Functions of natural killer cells. Nat Immunol 2008; 9: 503-510
- 33 Guidotti LG, Rochford R, Chung J et al. Viral clearance without destruction of infected cells during acute HBV infection. Science 1999; 284: 825-829
- 34 Kagi D, Ledermann B, Burki K et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 1994; 369: 31-37
- 35 Raveh D, Kruskal BA, Farland J et al. T(h)1 and T(h)2 cytokines cooperate to stimulate mannose-receptor-mediated phagocytosis. J Leukocyte Biol 1998; 64: 108-113
- 36 Huang LR, Wohlleber D, Reisinger F et al. Intrahepatic myeloid-cell aggregates enable local proliferation of CD8(+) T cells and successful immunotherapy against chronic viral liver infection. Nature immunology 2013; 14: 574-583
- 37 Lang PA, Contaldo C, Georgiev P et al. Aggravation of viral hepatitis by platelet-derived serotonin. Nat Med 2008; 14: 756-761
- 38 Lang PA, Meryk A, Pandyra AA et al. Toso regulates differentiation and activation of inflammatory dendritic cells during persistence-prone virus infection. Cell Death Differ 2015; 22: 164-173
- 39 Barber DL, Wherry EJ, Masopust D et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006; 439: 682-687
- 40 Brooks DG, Trifilo MJ, Edelmann KH et al. Interleukin-10 determines viral clearance or persistence in vivo. Nat Med 2006; 12: 1301-1309
- 41 Freeman GJ, Long AJ, Iwai Y et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000; 192: 1027-1034
- 42 Arai T, Hiromatsu K, Kobayashi N et al. Il-10 Is Involved in the Protective Effect of Dibutyryl Cyclic Adenosine-Monophosphate on Endotoxin-Induced Inflammatory Liver-Injury. J Immunol 1995; 155: 5743-5749
- 43 Maier H, Isogawa M, Freeman GJ et al. PD-1: PD-L1 interactions contribute to the functional suppression of virus-specific CD8(+) T lymphocytes in the liver. J Immunol 2007; 178: 2714-2720
- 44 Brooks DG, Lee AM, Elsaesser H et al. IL-10 blockade facilitates DNA vaccine-induced T cell responses and enhances clearance of persistent virus infection. The Journal of experimental medicine 2008; 205: 533-541
- 45 Brooks DG, McGavern DB, Oldstone MB. Reprogramming of antiviral T cells prevents inactivation and restores T cell activity during persistent viral infection. The Journal of clinical investigation 2006; 116: 1675-1685
- 46 Lang PA, Lang KS, Xu HC et al. Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity. Proceedings of the National Academy of Sciences of the United States of America 2012; 109: 1210-1215
- 47 Waggoner SN, Cornberg M, Selin LK et al. Natural killer cells act as rheostats modulating antiviral T cells. Nature 2012; 481: 394-398
- 48 Crouse J, Bedenikovic G, Wiesel M et al. Type I Interferons Protect T Cells against NK Cell Attack Mediated by the Activating Receptor NCR1. Immunity 2014; 40: 961-973
- 49 Xu HC, Grusdat M, Pandyra AA et al. Type I interferon protects antiviral CD8(+) T cells from NK cell cytotoxicity. Immunity 2014; 40: 949-960
- 50 Cook KD, Whitmire JK. The depletion of NK cells prevents T cell exhaustion to efficiently control disseminating virus infection. J Immunol 2013; 190: 641-649
- 51 Lang PA, Xu HC, Grusdat M et al. Reactive oxygen species delay control of lymphocytic choriomeningitis virus. Cell death and differentiation 2013; 20: 649-658
- 52 Man K, Miasari M, Shi W et al. The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells. Nat Immunol 2013; 14: 1155-1165
- 53 Yao S, Buzo BF, Pham D et al. Interferon regulatory factor 4 sustains CD8(+) T cell expansion and effector differentiation. Immunity 2013; 39: 833-845
- 54 Iannacone M, Sitia G, Isogawa M et al. Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nat Med 2005; 11: 1167-1169