Radiopraxis 2016; 9(02): 73-90
DOI: 10.1055/s-0041-110308
CRTE/CPD – Zertifizierte Fortbildung mit der Radiopraxis
© Georg Thieme Verlag KG Stuttgart · New York

Diagnostik von Knochenmetastasen mittels neuer bildgebender Verfahren

Diagnosing Bone Metastases with New Imaging Technologies
M. Hübner
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
09. Juni 2016 (online)

Knochenmetastasen sind die häufigsten Tumormanifestationen des Skelettsystems. In Hinblick auf eine optimale Therapieplanung spielt die frühzeitige Diagnostik eine entscheidende Rolle. In der jüngeren Vergangenheit wurden neue Diagnoseverfahren wie die simultane PET/MRT in die Klinik eingeführt. Die ersten Ergebnisse aktueller Studien zeigen ein großes Potenzial der PET/MRT bei der Erkennung ossärer Metastasen. Durch eine Reduktion der Strahlenexposition im Vergleich zum PET/CT zeichnet sich ein Vorteil besonders im Bereich der Tumordiagnostik von Kindern und jungen Erwachsenen ab.

Abstract

Bone metastases are the most common tumor entity of the skeletal system. Because of its effect on the choice of therapeutic regime, early and accurat detection of bone metastases is mandatory. The first combined PET/MRI scanners have been introduced into the clinical environment in the early past. Recent clinical studies have shown a great potential of PET/MRI in the detection of osseous metastases. In particular, the reduction of radiation exposure will have a benefit over PET/CT-examinations, especially in tumor diagnostic of children and young adults.

Kernaussagen
  • Knochenmetastasen sind die häufigsten Tumormanifestationen des Skelettsystems. Für eine optimale Therapieplanung ist die frühzeitige Diagnostik wichtig.

  • Aktuelle Studien zeigen ein großes Potenzial der PET/MRT bei der Erkennung ossärer Metastasen.

  • Die geringere Strahlenexposition der PET/MRT im Vergleich zum PET/CT ist besonders im Bereich der Tumordiagnostik von Kindern und jungen Erwachsenen vorteilhaft

 
  • Literatur

  • 1 Uhl M, Herget GW. Radiologische Diagnostik von Knochentumoren. Stuttgart: Thieme; 2008
  • 2 Steinborn M, Tiling R, Heuck A et al. Diagnostik der Metastasierung im Knochenmark mittels MRT. Radiologe 2000; 40: 826-834
  • 3 Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 2005; 46: 1356-1367
  • 4 Rubens RD. Bone metastases -- the clinical problem. Eur J Cancer 1998; 34: 210-213
  • 5 Pelosi E, Messa C, Sironi S et al. Value of integrated PET/CT for lesion localisation in cancer patients: a comparative study. Eur J Nucl Med Mol Imaging 2004; 31: 932-939
  • 6 Bockisch A, Beyer T, Antoch G et al. Grundlagen und klinischer Nutzen von PET-CT. Radiologe 2004; 44: 1045-1054
  • 7 Drzezga A, Souvatzoglou M, Eiber M et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 2012; 53: 845-855
  • 8 Schwenzer NF, Pfannenberg C, Reischl G et al. Einsatz von MR/PET in der onkologischen Bildgebung. Rofo 2012; 184: 780-787
  • 9 Antoch G, Bockisch A. Combined PET/MRI: a new dimension in whole-body oncology imaging?. Eur J Nucl Med Mol Imaging 2009; 36: S113-S120
  • 10 Buchbender C, Heusner TA, Lauenstein TC et al. Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma. J Nucl Med 2012; 53: 1244-1252
  • 11 Krishnamurthy GT, Tubis M, Hiss J et al. Distribution pattern of metastatic bone disease. A need for total body skeletal image. JAMA 1977; 237: 2504-2506
  • 12 Batson OV. The Function of the Vertebral Veins and Their Role in the Spread of Metastases. Ann Surg 1940; 112: 138-149
  • 13 Choi J, Raghavan M. Diagnostic imaging and image-guided therapy of skeletal metastases. Cancer Control 2012; 19: 102-112
  • 14 Bayrak SB, Ceylan E, Serter M et al. The clinical importance of bone metabolic markers in detecting bone metastasis of lung cancer. Int J Clin Oncol 2012; 17: 112-118
  • 15 Hamaoka T, Madewell JE, Podoloff DA et al. Bone imaging in metastatic breast cancer. J Clin Oncol 2004; 22: 2942-2953
  • 16 Rybak LD, Rosenthal DI. Radiological imaging for the diagnosis of bone metastases. Q J Nucl Med 2001; 45: 53-64
  • 17 Sarma A, Heilbrun ME, Conner KE et al. Radiation and chest CT scan examinations: what do we know?. Chest 2012; 142: 750-760
  • 18 Weishaupt D, Köchli VD, Marincek B, Froehlich JM. Wie funktioniert MRI? . 6. . Aufl. Heidelberg: Springer Medizin; 2009
  • 19 Tokuda O, Hayashi N, Matsunaga N. MRI of bone tumors: Fast STIR imaging as a substitute for T1-weighted contrast-enhanced fat-suppressed spin-echo imaging. J Magn Reson Imaging 2004; 19: 475-481
  • 20 Lecouvet FE, Larbi A, Pasoglou V et al. MRI for response assessment in metastatic bone disease. Eur Radiol 2013; 23: 1986-1997
  • 21 Antoch G, Vogt FM, Freudenberg LS et al. Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 2003; 290: 3199-3206
  • 22 Yang HL, Liu T, Wang XM et al. Diagnosis of bone metastases: a meta-analysis comparing 18FDG PET, CT, MRI and bone scintigraphy. Eur Radiol 2011; 21: 2604-2617
  • 23 Schober O, Beyer F. PET-CT Hybrid Imaging. Stuttgart, New York: Thieme; 2010
  • 24 Townsend DW, Beyer T, Blodgett TM. PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med 2003; 33: 193-204
  • 25 Pichler BJ, Judenhofer MS, Catana C et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 2006; 47: 639-647
  • 26 Martinez-Möller A, Souvatzoglou M, Delso G et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 2009; 50: 520-526
  • 27 Akbarzadeh A, Ay MR, Ahmadian A et al. MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation. Ann Nucl Med 2013; 27: 152-162
  • 28 Schmidt GP, Schoenberg SO, Schmid R et al. Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol 2007; 17: 939-949
  • 29 Avery R, Kuo PH. 18F sodium fluoride PET/CT detects osseous metastases from breast cancer missed on FDG PET/CT with marrow rebound. Clin Nucl Med 2013; 38: 746-748
  • 30 Stattaus J, Hahn S, Gauler T et al. Osteoblastic response as a healing reaction to chemotherapy mimicking progressive disease in patients with small cell lung cancer. Eur Radiol 2009; 19: 193-200
  • 31 Beiderwellen K, Huebner M, Heusch P et al. Whole-body [18F]FDG PET/MRI vs. PET/CT in the assessment of bone lesions in oncological patients: initial results. Eur Radiol 2014; 24: 2023-2030
  • 32 Schweitzer ME, Levine C, Mitchell DG et al. Bull's-eyes and halos: useful MR discriminators of osseous metastases. Radiology 1993; 188: 249-252
  • 33 Catalano OA, Nicolai E, Rosen BR et al. Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients. Br J Cancer 2015; 112: 1452-1460
  • 34 Wehrli FW. Magnetic resonance of calcified tissues. J Magn Reson 2013; 229: 35-48
  • 35 Brix G, Lechel U, Glatting G et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med 2005; 46: 608-613
  • 36 Hirsch FW, Sattler B, Sorge I et al. PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol 2013; 43: 860-875
  • 37 Schaefer JF, Gatidis S, Schmidt H et al. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology 2014; 273: 220-231