Klin Monbl Augenheilkd 2016; 233(03): 290-297
DOI: 10.1055/s-0041-110956
Experimentelle Studie
Georg Thieme Verlag KG Stuttgart · New York

Expression von EphA2 in metastasierten und nicht metastasierten primären uvealen Melanomen

Expression of EphA2 in Metastatic and Non-Metastatic Primary Uveal Melanoma
V. Vukoja
1   Klinik für Augenheilkunde, Universität zu Lübeck
,
T. Brandenbusch
1   Klinik für Augenheilkunde, Universität zu Lübeck
,
A. Tura
1   Klinik für Augenheilkunde, Universität zu Lübeck
,
K. Nassar
1   Klinik für Augenheilkunde, Universität zu Lübeck
,
D. J. M. Rohrbach
2   Department für Augenheilkunde, Forschungsbereich Geschichte der Augenheilkunde/Ophthalmopathologisches Labor, Eberhard-Karls-Universität Tübingen
,
M. Lüke
1   Klinik für Augenheilkunde, Universität zu Lübeck
,
S. Grisanti
1   Klinik für Augenheilkunde, Universität zu Lübeck
,
J. Lüke
1   Klinik für Augenheilkunde, Universität zu Lübeck
› Author Affiliations
Further Information

Publication History

eingereicht 10 February 2015

akzeptiert 02 December 2015

Publication Date:
08 February 2016 (online)

Zusammenfassung

Hintergrund: Bisher ist die genaue Expression des Ephrin-Typ-A2-Rezeptors (EphA2) im Hinblick auf dessen Bedeutung während der Zell-Zell-Adhäsion, Zellmigration, Angiogenese und der Formation von VM-Kanälen (VM: Vasculogenic Mimicry) in uvealen Melanomen unter Berücksichtigung der Metastasierungsrate unklar. Material und Methoden: Paraffinschnitte von 50 histopathologisch gut charakterisierten Fällen primärer uvealer Melanome (durchschnittlicher Tumordurchmesser: 16,3 mm) wurden hinsichtlich ihrer Expression von EphA2 evaluiert. Bei 29 Patienten traten systemische Metastasen auf. Die verbleibenden 21 Patienten hatten einen durchschnittlichen Nachuntersuchungszeitraum von 10 Jahren. Zusätzlich wurde die Tumorangiogenese mittels Endoglin-Expression (CD105), das mature Gefäßsystem (Von-Willebrand-Faktor, vWF) und das Vorhandensein von VM (CD31/PAS-Färbung) untersucht. Ergebnisse: Alle uvealen Melanome exprimierten EphA2 mit einer durchschnittlichen Anzahl positiver Zellen von 95,93 % (± Standardabweichung: 6,3 %). Es war zwar keine signifikante objektive Assoziation von EphA2 und der Metastasierungsrate (p = 0,196) bzw. der Endoglin-Expression (p = 0,652), VM (p = 0,267) oder weiteren klinischen oder histopathologischen Prognosefaktoren (p < 0,05) nachweisbar, jedoch zeigte sich eine signifikante Hochregulation von EphA2 im Bereich des Zellkerns in der Subgruppe der metastasierten uvealen Melanome, während eine zytoplasmatische Lokalisation mit einer besseren Prognose assoziiert war (p = 0,006). Zusätzlich wiesen verschiedene okuläre Gewebe wie z. B. bestimmte Netzhautschichten, das Ziliarkörper- und Hornhautepithel bzw. das choroidale oder korneale Endothel eine milde EphA2-Expression auf. Schlussfolgerung: Während eine nukleäre Expression von EphA2 in dieser Serie großer Tumoren signifikant mit einer erhöhten Metastasierungsrate assoziiert war, zeigt eine zytoplasmatische Lokalisation eine bessere Prognose. Da keine Korrelation der EphA2-Expression mit der Angiogenese, dem maturen Gefäßsystem oder dem VM nachgewiesen werden konnte, scheint die regulative Bedeutung von EphA2 für die Ausbildung blutzuführender Systeme möglicherweise in den fortgeschrittenen Stadien in den Hintergrund zu treten.

Abstract

Background: Little is known about how the expression of Ephrin type-A receptor 2 (EphA2) influences cell-cell adhesion, migration, angiogenesis, and the formation of vasculogenic mimicry (VM) channels in uveal melanomas or how this may be related to the rate of metastasis. Material and Methods: Paraffin embedded sections of 50 histopathologically well characterised primary uveal melanomas (mean largest tumour diameter: 16.3 mm) were evaluated with respect to the expression of EphA2. Systemic metastasis was detected in 29 patients. The remaining 21 patients were followed for a mean of 10 years. Tumour angiogensis was analysed by endoglin expression (CD105), the activity of the mature vascular system (von Willebrand factor) and the presence of VM (CD31/PAS staining). Results: All uveal melanomas expressed EphA2, with a mean of 95.93 % positive cells ± SD: 6.3 %. There was no significant association between EphA2 and the rate of metastases (p = 0.196), endoglin expression (p = 0.652), VM (p = 0.267) or with any other clinical or histopathological factors (p < 0.05). However, there was significant up-regulation of EphA2 in the nucleus of the metastatic uveal melanoma subgroup, while cytoplasmatic localisation in the subgroup was associated with better prognosis (p = 0.006). There were low levels of EphA2 expression in the specific retinal layers, the ciliary and corneal epithelium, and the choroidal and corneal endothelium. Conclusion: Nuclear expression of EphA2 in this series of large tumours was significantly associated with an increased rate of metastasis. On the other hand, cytoplasmic localisation was associated with a better prognosis. As there was no correlation between EphA2 expression and angiogenesis, the mature vasculature or VM, EphA2 appears to become less important in the advanced stages of the disease.

 
  • Literatur

  • 1 Wagoner MD, Albert DM. The incidence of metastases from untreated ciliary body and choroidal melanoma. Arch Ophthalmol 1982; 100: 939-940
  • 2 Pach JM, Robertson DM. Metastasis from untreated uveal melanomas. Arch Ophthalmol 1986; 104: 1624-1625
  • 3 Kujala E, Kivelä T. Tumor, node, metastasis classification of malignant ciliary body and choroidal melanoma evaluation of the 6th edition and future directions. Ophthalmology 2005; 112: 1135-1144
  • 4 Prescher G, Bornfeld N, Hirche H et al. Prognostic implications of monosomy 3 in uveal melanoma. Lancet 1996; 347: 1222-1225
  • 5 Sisley K, Rennie IG, Parsons MA et al. Abnormalities of chromosomes 3 and 8 in posterior uveal melanoma correlate with prognosis. Genes Chromosomes Cancer 1997; 19: 22-28
  • 6 Onken MD, Worley LA, Long MD et al. Oncogenic mutations in GNAQ occur early in uveal melanoma. Invest Ophthalmol Vis Sci 2008; 49: 5230-5234
  • 7 Metz CH, Scheulen M, Bornfeld N et al. Ultradeep sequencing detects GNAQ and GNA11 mutations in cell-free DNA from plasma of patients with uveal melanoma. Cancer Med 2013; 2: 208-215
  • 8 Madic J, Piperno-Neumann S, Servois V et al. Pyrophosphorolysis-activated polymerization detects circulating tumor DNA in metastatic uveal melanoma. Clin Cancer Res 2012; 18: 3934-3941
  • 9 Harbour JW, Onken MD, Roberson ED et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 2010; 330: 1410-1413
  • 10 Harbour JW, Roberson ED, Anbunathan H et al. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nat Genet 2013; 45: 133-135
  • 11 Martin M, Maßhöfer L, Temming P et al. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat Genet 2013; 45: 933-936
  • 12 Maniotis AJ, Folberg R, Hess A et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 1999; 155: 739-752
  • 13 Folberg R, Peʼer J, Gruman LM et al. The morphologic characteristics of tumor blood vessels as a marker of tumor progression in primary human uveal melanoma: a matched case-control study. Hum Pathol 1992; 23: 1298-1305
  • 14 Folberg R, Rummelt V, Parys-Van Ginderdeuren R et al. The prognostic value of tumor blood vessel morphology in primary uveal melanoma. Ophthalmology 1993; 100: 1389-1398
  • 15 Holder N, Klein R. Eph receptors and ephrins: effectors of morphogenesis. Development 1999; 126: 2033-2044
  • 16 Flanagan JG, Vanderhaeghen P. The ephrins and Eph receptors in neural development. Ann Rev Neurosci 1998; 21: 309-345
  • 17 Holmberg J, Clarke DL, Frisen J. Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature 2000; 408: 203-206
  • 18 Robinson V, Smith A, Flenniken AM et al. Roles of Eph receptors and ephrins in neural crest pathfinding. Cell Tissue Res 1997; 290: 265-274
  • 19 Santiago A, Erickson CA. Ephrin-B ligands play a dual role in the control of neural crest cell migration. Development 2002; 129: 3621-3632
  • 20 Zelinski DP, Zantek ND, Stewart JC et al. EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res 2001; 61: 2301-2306
  • 21 Lin YG, Han LY, Kamat AA et al. EphA2 overexpression is associated with angiogenesis in ovarian cancer. Cancer 2007; 109: 332-340
  • 22 Walker-Daniels J, Coffman K, Azimi M et al. Overexpression of the EphA2 tyrosine kinase in prostate cancer. Prostate 1999; 41: 275-280
  • 23 Herath NI, Boyd AW. The role of Eph receptors and ephrin ligands in colorectal cancer. Int J Cancer 2010; 126: 2003-2011
  • 24 Brannan JM, Sen B, Saigal B et al. EphA2 in the early pathogenesis and progression of non-small cell lung cancer. Cancer Prev Res (Phila) 2009; 2: 1039-1049
  • 25 Duxbury MS, Ito H, Zinner MJ et al. EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene 2004; 23: 1448-1456
  • 26 Wykosky J, Gibo DM, Stanton C et al. EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res 2005; 3: 541-551
  • 27 Zelinski DP, Zantek ND, Stewart JC et al. EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res 2001; 61: 2301-2306
  • 28 Li X, Wang L, Gu JW et al. Up-regulation of EphA2 and down-regulation of EphrinA1 are associated with the aggressive phenotype and poor prognosis of malignant glioma. Tumour Biol 2010; 31: 477-488
  • 29 Brantley-Sieders DM, Jiang A, Sarma K et al. Eph/ephrin profiling in human breast cancer reveals significant associations between expression level and clinical outcome. PLoS ONE 2011; 6: e24426
  • 30 Van den Broeck A, Vankelecom H, Van Eijsden R et al. Molecular markers associated with outcome and metastasis in human pancreatic cancer. J Exp Clin Cancer Res 2012; 31: 68
  • 31 Kinch MS, Moore MB, Harpole jr. DH. Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin Cancer Res 2003; 9: 613-618
  • 32 Hess AR, Seftor EA, Gardner LM et al. Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Res 2001; 61: 3250-3255
  • 33 Chen LX, Sun BC, Li XR et al. [Overexpression of the receptor tyrosine kinase EphA2 in choroidal melanoma: correlation with vesculogenic mimicry and prognosis]. Zhonghua Yan Ke Za Zhi 2012; 48: 985-990
  • 34 Makitie T, Tarkkanen A, Kivela T. Comparative immunohistochemical oestrogen receptor analysis in primary and metastatic uveal melanoma. Graefes Arch Clin Exp Ophthalmol 1998; 236: 415-419
  • 35 Margaryan NV, Strizzi L, Abbott DE et al. EphA2 as a promoter of melanoma tumorigenicity. Cancer Biol Ther 2009; 8: 279-288
  • 36 Brantley DM, Cheng N, Thompson EJ et al. Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene 2002; 21: 7011-7026
  • 37 Hess AR, Margaryan NV, Seftor EA et al. Deciphering the signaling events that promote melanoma tumor cell vasculogenic mimicry and their link to embryonic vasculogenesis: role of the Eph receptors. Dev Dyn 2007; 236: 3283-3296
  • 38 Griewank KG, Yu X, Khalili J et al. Genetic and molecular characterization of uveal melanoma cell lines. Pigment Cell Melanoma Res 2012; 252: 182-187
  • 39 Holm R, Knopp S, Suo Z et al. Expression of EphA2 and EphrinA-1 in vulvar carcinomas and its relation to prognosis. J Clin Pathol 2007; 60: 1086-1091
  • 40 Chen L, Zhang S, Li X et al. A pilot study of vasculogenic mimicry immunohistochemical expression in intraocular melanoma model. Oncol Rep 2009; 21: 989-994
  • 41 Cheng N, Brantley DM, Liu H et al. Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis. Mol Cancer Res 2002; 1: 2-11
  • 42 Brantley-Sieders DM, Fang WB, Hwang Y et al. Ephrin-A1 facilitates mammary tumor metastasis through an angiogenesis-dependent mechanism mediated by EphA receptor and vascular endothelial growth factor in mice. Cancer Res 2006; 66: 10315-10324
  • 43 Brantley-Sieders DM, Fang WB, Hicks DJ et al. Impaired tumor microenvironment in EphA2-deficient mice inhibits tumor angiogenesis and metastatic progression. FASEB J 2005; 19: 1884-1886
  • 44 Straume O, Akslen LA. Importance of vascular phenotype by basic fibroblast growth factor, and influence of the angiogenic factors basic fibroblast growth factor/fibroblast growth factor receptor-1 and ephrin-A1/EphA2 on melanoma progression. Am J Pathol 2002; 160: 1009-1019
  • 45 Parri M, Taddei ML, Bianchini F et al. EphA2 reexpression prompts invasion of melanoma cells shifting from mesenchymal to amoeboid-like motility style. Cancer Res 2009; 69: 2072-2081
  • 46 Dobrzanski P, Hunter K, Jones-Bolin S et al. Antiangiogenic and antitumor efficacy of EphA2 receptor antagonist. Cancer Res 2004; 64: 910-919
  • 47 Carles-Kinch K, Kilpatrick KE, Stewart JC et al. Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res 2002; 62: 2840-2847
  • 48 Tandon M, Vemula SV, Mittal SK. Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin Ther Targets 2011; 15: 31-51