Semin Thromb Hemost 2021; 47(03): 316-332
DOI: 10.1055/s-0041-1725067
Review Article

Development of Molecules Antagonizing Heparan Sulfate Proteoglycans

Tanja Gerlza
1   Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
,
Christina Trojacher
1   Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
,
Nikola Kitic
1   Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
,
Tiziana Adage
2   Antagonis Biotherapeutics GmbH, Graz, Austria
,
Andreas J. Kungl
1   Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
2   Antagonis Biotherapeutics GmbH, Graz, Austria
› Author Affiliations

Abstract

Heparan sulfate proteoglycans (HSPGs) occur in almost every tissue of the human body and consist of a protein core, with covalently attached glycosaminoglycan polysaccharide chains. These glycosaminoglycans are characterized by their polyanionic nature, due to sulfate and carboxyl groups, which are distributed along the chain. These chains can be modified by different enzymes at varying positions, which leads to huge diversity of possible structures with the complexity further increased by varying chain lengths. According to their location, HSPGs are divided into different families, the membrane bound, the secreted extracellular matrix, and the secretory vesicle family. As members of the extracellular matrix, they take part in cell–cell communication processes on many levels and with different degrees of involvement. Of particular therapeutic interest is their role in cancer and inflammation as well as in infectious diseases. In this review, we give an overview of the current status of medical approaches to antagonize HSPG function in pathology.



Publication History

Article published online:
01 April 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Rudd TR, Skidmore MA, Guerrini M. et al. The conformation and structure of GAGs: recent progress and perspectives. Curr Opin Struct Biol 2010; 20 (05) 567-574
  • 2 Whitelock JM, Iozzo RV. Heparan sulfate: a complex polymer charged with biological activity. Chem Rev 2005; 105 (07) 2745-2764
  • 3 Esko JD, Kimata K, Lindahl U. Proteoglycans and sulfated glycosaminoglycans. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2009
  • 4 Imberty A, Lortat-Jacob H, Pérez S. Structural view of glycosaminoglycan-protein interactions. Carbohydr Res 2007; 342 (3-4): 430-439
  • 5 Gesslbauer B, Rek A, Falsone F, Rajkovic E, Kungl AJ. Proteoglycanomics: tools to unravel the biological function of glycosaminoglycans. Proteomics 2007; 7 (16) 2870-2880
  • 6 Lindahl U, Kusche-Gullberg M, Kjellén L. Regulated diversity of heparan sulfate. J Biol Chem 1998; 273 (39) 24979-24982
  • 7 Vanheule V, Crijns H, Poosti F. et al. Anti-inflammatory effects of the GAG-binding CXCL9(74-103) peptide in dinitrofluorobenzene-induced contact hypersensitivity in mice. Clin Exp Allergy 2018; 48 (10) 1333-1344
  • 8 Xie M, Li JP. Heparan sulfate proteoglycan - a common receptor for diverse cytokines. Cell Signal 2019; 54: 115-121
  • 9 Sampaio LO, Tersariol IL, Lopes CC. et al. Heparins and heparan sulfates: structure, distribution and protein interactions. Transworld Research Network. 2006: 51-61
  • 10 Gandhi NS, Mancera RL. The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 2008; 72 (06) 455-482
  • 11 Rek A, Krenn E, Kungl AJ. Therapeutically targeting protein-glycan interactions. Br J Pharmacol 2009; 157 (05) 686-694
  • 12 Handel TM, Johnson Z, Crown SE, Lau EK, Proudfoot AE. Regulation of protein function by glycosaminoglycans--as exemplified by chemokines. Annu Rev Biochem 2005; 74 (01) 385-410
  • 13 Gallagher J. Fell-Muir lecture: heparan sulphate and the art of cell regulation: a polymer chain conducts the protein orchestra. Int J Exp Pathol 2015; 96 (04) 203-231
  • 14 Lambaerts K, Wilcox-Adelman SA, Zimmermann P. The signaling mechanisms of syndecan heparan sulfate proteoglycans. Curr Opin Cell Biol 2009; 21 (05) 662-669
  • 15 Vicente CM, da Silva DA, Sartorio PV. et al. Heparan sulfate proteoglycans in human colorectal cancer. Anal Cell Pathol (Amst) 2018; 2018: 8389595
  • 16 Simons M, Horowitz A. Syndecan-4-mediated signalling. Cell Signal 2001; 13 (12) 855-862
  • 17 Fransson L-Å, Belting M, Cheng F, Jönsson M, Mani K, Sandgren S. Novel aspects of glypican glycobiology. Cell Mol Life Sci 2004; 61 (09) 1016-1024
  • 18 Fransson LA. Glypicans. Int J Biochem Cell Biol 2003; 35 (02) 125-129
  • 19 Yip GW, Smollich M, Götte M. Therapeutic value of glycosaminoglycans in cancer. Mol Cancer Ther 2006; 5 (09) 2139-2148
  • 20 Basappa. Rangappa KS, Sugahara K. Roles of glycosaminoglycans and glycanmimetics in tumor progression and metastasis. Glycoconj J 2014; 31 (6-7): 461-467
  • 21 Proudfoot AE. The biological relevance of chemokine-proteoglycan interactions. Biochem Soc Trans 2006; 34 (Pt 3): 422-426
  • 22 Pomin VH, Mulloy B. Glycosaminoglycans and proteoglycans. In: Multidisciplinary Digital Publishing Institute. 2018: 1-9
  • 23 Lindahl U. A personal voyage through the proteoglycan field. Matrix Biol 2014; 35: 3-7
  • 24 Häcker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 2005; 6 (07) 530-541
  • 25 Coston WM, Loera S, Lau SK. et al. Distinction of hepatocellular carcinoma from benign hepatic mimickers using glypican-3 and CD34 immunohistochemistry. Am J Surg Pathol 2008; 32 (03) 433-444
  • 26 Zhu ZW, Friess H, Wang L. et al. Enhanced glypican-3 expression differentiates the majority of hepatocellular carcinomas from benign hepatic disorders. Gut 2001; 48 (04) 558-564
  • 27 Filmus J, Capurro M. Glypican-3: a marker and a therapeutic target in hepatocellular carcinoma. FEBS J 2013; 280 (10) 2471-2476
  • 28 Hsu H-C, Cheng W, Lai P-L. Cloning and expression of a developmentally regulated transcript MXR7 in hepatocellular carcinoma: biological significance and temporospatial distribution. Cancer Res 1997; 57 (22) 5179-5184
  • 29 Zhou F, Shang W, Yu X, Tian J. Glypican-3: a promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med Res Rev 2018; 38 (02) 741-767
  • 30 Capurro M, Wanless IR, Sherman M. et al. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology 2003; 125 (01) 89-97
  • 31 Li L, Jin R, Zhang X. et al. Oncogenic activation of glypican-3 by c-Myc in human hepatocellular carcinoma. Hepatology 2012; 56 (04) 1380-1390
  • 32 Capurro MI, Xiang Y-Y, Lobe C, Filmus J. Glypican-3 promotes the growth of hepatocellular carcinoma by stimulating canonical Wnt signaling. Cancer Res 2005; 65 (14) 6245-6254
  • 33 Midorikawa Y, Ishikawa S, Iwanari H. et al. Glypican-3, overexpressed in hepatocellular carcinoma, modulates FGF2 and BMP-7 signaling. Int J Cancer 2003; 103 (04) 455-465
  • 34 Ishiguro T, Sugimoto M, Kinoshita Y. et al. Anti-glypican 3 antibody as a potential antitumor agent for human liver cancer. Cancer Res 2008; 68 (23) 9832-9838
  • 35 Nakano K, Orita T, Nezu J. et al. Anti-glypican 3 antibodies cause ADCC against human hepatocellular carcinoma cells. Biochem Biophys Res Commun 2009; 378 (02) 279-284
  • 36 Ikeda M, Ohkawa S, Okusaka T. et al. Japanese phase I study of GC33, a humanized antibody against glypican-3 for advanced hepatocellular carcinoma. Cancer Sci 2014; 105 (04) 455-462
  • 37 Abou-Alfa GK, Puig O, Daniele B. et al. Randomized phase II placebo controlled study of codrituzumab in previously treated patients with advanced hepatocellular carcinoma. J Hepatol 2016; 65 (02) 289-295
  • 38 Zhang Y-F, Ho M. Humanization of high-affinity antibodies targeting glypican-3 in hepatocellular carcinoma. Sci Rep 2016; 6 (01) 33878
  • 39 Phung Y, Gao W, Man Y-G, Nagata S, Ho M. High-affinity monoclonal antibodies to cell surface tumor antigen glypican-3 generated through a combination of peptide immunization and flow cytometry screening. MAbs 2012; 4 (05) 592-599
  • 40 Fu Y, Urban DJ, Nani RR. et al. Glypican-3-specific antibody drug conjugates targeting hepatocellular carcinoma. Hepatology 2019; 70 (02) 563-576
  • 41 Hanaoka H, Nagaya T, Sato K. et al. Glypican-3 targeted human heavy chain antibody as a drug carrier for hepatocellular carcinoma therapy. Mol Pharm 2015; 12 (06) 2151-2157
  • 42 Gao W, Tang Z, Zhang Y-F. et al. Immunotoxin targeting glypican-3 regresses liver cancer via dual inhibition of Wnt signalling and protein synthesis. Nat Commun 2015; 6 (01) 6536
  • 43 Gao W, Kim H, Feng M. et al. Inactivation of Wnt signaling by a human antibody that recognizes the heparan sulfate chains of glypican-3 for liver cancer therapy. Hepatology 2014; 60 (02) 576-587
  • 44 Gengrinovitch S, Berman B, David G, Witte L, Neufeld G, Ron D. Glypican-1 is a VEGF165 binding proteoglycan that acts as an extracellular chaperone for VEGF165. J Biol Chem 1999; 274 (16) 10816-10822
  • 45 Harada E, Serada S, Fujimoto M. et al. Glypican-1 targeted antibody-based therapy induces preclinical antitumor activity against esophageal squamous cell carcinoma. Oncotarget 2017; 8 (15) 24741-24752
  • 46 Hara H, Takahashi T, Serada S. et al. Overexpression of glypican-1 implicates poor prognosis and their chemoresistance in oesophageal squamous cell carcinoma. Br J Cancer 2016; 115 (01) 66-75
  • 47 Matsuda K, Maruyama H, Guo F. et al. Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer Res 2001; 61 (14) 5562-5569
  • 48 Melo SA, Luecke LB, Kahlert C. et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015; 523 (7559): 177-182
  • 49 Aikawa T, Whipple CA, Lopez ME. et al. Glypican-1 modulates the angiogenic and metastatic potential of human and mouse cancer cells. J Clin Invest 2008; 118 (01) 89-99
  • 50 Matsuzaki S, Serada S, Hiramatsu K. et al. Anti-glypican-1 antibody-drug conjugate exhibits potent preclinical antitumor activity against glypican-1 positive uterine cervical cancer. Int J Cancer 2018; 142 (05) 1056-1066
  • 51 Yokota K, Serada S, Tsujii S. et al. Abstract 4833: antibody-drug conjugate targeting glypican-1 shows tumor growth inhibition in cholangiocarcinoma. Cancer Res 2019; 79 (13, Suppl): 4833
  • 52 Serada S, Nishigaki T, Sugase T. et al. Antibody-drug conjugate targeting glypican-1 shows potent antitumor effect in pancreatic cancer. Cancer Res 2018; 78 (13, Suppl): 816
  • 53 Ivins JK, Litwack ED, Kumbasar A, Stipp CS, Lander AD. Cerebroglycan, a developmentally regulated cell-surface heparan sulfate proteoglycan, is expressed on developing axons and growth cones. Dev Biol 1997; 184 (02) 320-332
  • 54 Li N, Fu H, Hewitt SM, Dimitrov DS, Ho M. Therapeutically targeting glypican-2 via single-domain antibody-based chimeric antigen receptors and immunotoxins in neuroblastoma. Proc Natl Acad Sci U S A 2017; 114 (32) E6623-E6631
  • 55 Bosse KR, Raman P, Zhu Z. et al. Identification of GPC2 as an oncoprotein and candidate immunotherapeutic target in high-risk neuroblastoma. Cancer Cell 2017; 32 (03) 295-309.e12
  • 56 Wang J, Reiss KA, Khatri R, Jaffee E, Laheru D. Immune therapy in GI malignancies: a review. J Clin Oncol 2015; 33 (16) 1745-1753
  • 57 Nomi T, Sho M, Akahori T. et al. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 2007; 13 (07) 2151-2157
  • 58 Topalian SL, Hodi FS, Brahmer JR. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366 (26) 2443-2454
  • 59 Kwok G, Yau TC, Chiu JW, Tse E, Kwong YL. Pembrolizumab (Keytruda). Hum Vaccin Immunother 2016; 12 (11) 2777-2789
  • 60 Tsaytler P, Harding HP, Ron D, Bertolotti A. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 2011; 332 (6025): 91-94
  • 61 Mukaida N, Nakamoto Y. Emergence of immunotherapy as a novel way to treat hepatocellular carcinoma. World J Gastroenterol 2018; 24 (17) 1839-1858
  • 62 Shimizu Y, Suzuki T, Yoshikawa T. et al. Cancer immunotherapy-targeted glypican-3 or neoantigens. Cancer Sci 2018; 109 (03) 531-541
  • 63 Tsuchiya N, Yoshikawa T, Fujinami N. et al. Immunological efficacy of glypican-3 peptide vaccine in patients with advanced hepatocellular carcinoma. OncoImmunology 2017; 6 (10) e1346764
  • 64 Shimizu Y, Suzuki T, Yoshikawa T, Endo I, Nakatsura T. Next-generation cancer immunotherapy targeting glypican-3. Front Oncol 2019; 9: 248
  • 65 Sayem MA, Tomita Y, Yuno A. et al. Identification of glypican-3-derived long peptides activating both CD8+ and CD4+ T cells; prolonged overall survival in cancer patients with Th cell response. OncoImmunology 2015; 5 (01) e1062209
  • 66 Iwama T, Uchida T, Sawada Y. et al. Vaccination with liposome-coupled glypican-3-derived epitope peptide stimulates cytotoxic T lymphocytes and inhibits GPC3-expressing tumor growth in mice. Biochem Biophys Res Commun 2016; 469 (01) 138-143
  • 67 Li S-Q, Lin J, Qi C-Y. et al. GPC3 DNA vaccine elicits potent cellular antitumor immunity against HCC in mice. Hepatogastroenterology 2014; 61 (130) 278-284
  • 68 June CH, O'Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science 2018; 359 (6382): 1361-1365
  • 69 Li W, Guo L, Rathi P. et al. Redirecting T cells to glypican-3 with 4–1BB zeta chimeric antigen receptors results in Th1 polarization and potent antitumor activity. Hum Gene Ther 2017; 28 (05) 437-448
  • 70 Gao H, Li K, Tu H. et al. Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin Cancer Res 2014; 20 (24) 6418-6428
  • 71 Shiraiwa H, Narita A, Kamata-Sakurai M. et al. Engineering a bispecific antibody with a common light chain: Identification and optimization of an anti-CD3 epsilon and anti-GPC3 bispecific antibody, ERY974. Methods 2019; 154: 10-20
  • 72 Ishiguro T, Sano Y, Komatsu SI. et al. An anti-glypican 3/CD3 bispecific T cell-redirecting antibody for treatment of solid tumors. Sci Transl Med 2017; 9 (410) l4291
  • 73 Chen C, Li K, Jiang H. et al. Development of T cells carrying two complementary chimeric antigen receptors against glypican-3 and asialoglycoprotein receptor 1 for the treatment of hepatocellular carcinoma. Cancer Immunol Immunother 2017; 66 (04) 475-489
  • 74 Halfter W, Dong S, Schurer B, Cole GJ. Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J Biol Chem 1998; 273 (39) 25404-25412
  • 75 Liu F, Tan G, Li J, Dong X, Krissansen GW, Sun X. Gene transfer of endostatin enhances the efficacy of doxorubicin to suppress human hepatocellular carcinomas in mice. Cancer Sci 2007; 98 (09) 1381-1387
  • 76 Kulke MH, Bergsland EK, Ryan DP. et al. Phase II study of recombinant human endostatin in patients with advanced neuroendocrine tumors. J Clin Oncol 2006; 24 (22) 3555-3561
  • 77 Sun Y, Wang J, Liu Y. et al. Results of phase III trial of rh-endostatin (YH-16) in advanced non-small cell lung cancer (NSCLC) patients. J Clin Oncol 2005; 23 (16) 7138
  • 78 Ogren S, Lindahl U. Cleavage of macromolecular heparin by an enzyme from mouse mastocytoma. J Biol Chem 1975; 250 (07) 2690-2697
  • 79 Höök M, Wasteson A, Oldberg A. A heparan sulfate-degrading endoglycosidase from rat liver tissue. Biochem Biophys Res Commun 1975; 67 (04) 1422-1428
  • 80 Fairbanks MB, Mildner AM, Leone JW. et al. Processing of the human heparanase precursor and evidence that the active enzyme is a heterodimer. J Biol Chem 1999; 274 (42) 29587-29590
  • 81 Vreys V, David G. Mammalian heparanase: What is the message?. J Cell Mol Med 2007; 11 (03) 427-452
  • 82 Vlodavsky I, Elkin M, Ilan N. Impact of heparanase and the tumor microenvironment on cancer metastasis and angiogenesis: basic aspects and clinical applications. Rambam Maimonides Med J 2011; 2 (01) e0019
  • 83 Secchi MF, Masola V, Zaza G, Lupo A, Gambaro G, Onisto M. Recent data concerning heparanase: focus on fibrosis, inflammation and cancer. Biomol Concepts 2015; 6 (5-6): 415-421
  • 84 Hulett MD, Hornby JR, Ohms SJ. et al. Identification of active-site residues of the pro-metastatic endoglycosidase heparanase. Biochemistry 2000; 39 (51) 15659-15667
  • 85 Ramani VC, Yang Y, Ren Y, Nan L, Sanderson RD. Heparanase plays a dual role in driving hepatocyte growth factor (HGF) signaling by enhancing HGF expression and activity. J Biol Chem 2011; 286 (08) 6490-6499
  • 86 Sanderson RD, Yang Y. Syndecan-1: a dynamic regulator of the myeloma microenvironment. Clin Exp Metastasis 2008; 25 (02) 149-159
  • 87 Yang Y, Macleod V, Miao H-Q. et al. Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. J Biol Chem 2007; 282 (18) 13326-13333
  • 88 Purushothaman A, Uyama T, Kobayashi F. et al. Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood 2010; 115 (12) 2449-2457
  • 89 Wardrop D, Keeling D. The story of the discovery of heparin and warfarin. Br J Haematol 2008; 141 (06) 757-763
  • 90 Borsig L. Heparin as an inhibitor of cancer progression. Prog Mol Biol Transl Sci 2010; 93: 335-349
  • 91 Zhou H, Roy S, Cochran E. et al. M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis. PLoS One 2011; 6 (06) e21106
  • 92 O'Reilly EM, Roach J, Miller P. et al. Safety, pharmacokinetics, pharmacodynamics, and antitumor activity of necuparanib combined with nab-paclitaxel and gemcitabine in patients with metastatic pancreatic cancer: phase i results. Oncologist 2017; 22 (12) 1429-e139
  • 93 Naggi A, Casu B, Perez M. et al. Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. J Biol Chem 2005; 280 (13) 12103-12113
  • 94 Ritchie JP, Ramani VC, Ren Y. et al. SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin Cancer Res 2011; 17 (06) 1382-1393
  • 95 Dredge K, Hammond E, Handley P. et al. PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. Br J Cancer 2011; 104 (04) 635-642
  • 96 Dredge K, Hammond E, Davis K. et al. The PG500 series: novel heparan sulfate mimetics as potent angiogenesis and heparanase inhibitors for cancer therapy. Invest New Drugs 2010; 28 (03) 276-283
  • 97 Hammond E, Handley P, Dredge K, Bytheway I. Mechanisms of heparanase inhibition by the heparan sulfate mimetic PG545 and three structural analogues. FEBS Open Bio 2013; 3: 346-351
  • 98 Dredge K, Brennan TV, Hammond E. et al. A Phase I study of the novel immunomodulatory agent PG545 (pixatimod) in subjects with advanced solid tumours. Br J Cancer 2018; 118 (08) 1035-1041
  • 99 Ferro V, Fewings K, Palermo MC, Li C. Large-scale preparation of the oligosaccharide phosphate fraction of Pichia holstii NRRL Y-2448 phosphomannan for use in the manufacture of PI-88. Carbohydr Res 2001; 332 (02) 183-189
  • 100 Ferro V, Li C, Fewings K, Palermo MC, Linhardt RJ, Toida T. Determination of the composition of the oligosaccharide phosphate fraction of Pichia (Hansenula) holstii NRRL Y-2448 phosphomannan by capillary electrophoresis and HPLC. Carbohydr Res 2002; 337 (02) 139-146
  • 101 Khachigian LM, Parish CR. Phosphomannopentaose sulfate (PI-88): heparan sulfate mimetic with clinical potential in multiple vascular pathologies. Cardiovasc Drug Rev 2004; 22 (01) 1-6
  • 102 Lewis KD, Robinson WA, Millward MJ. et al. A phase II study of the heparanase inhibitor PI-88 in patients with advanced melanoma. Invest New Drugs 2008; 26 (01) 89-94
  • 103 Liu C-J, Lee P-H, Lin D-Y. et al. Heparanase inhibitor PI-88 as adjuvant therapy for hepatocellular carcinoma after curative resection: a randomized phase II trial for safety and optimal dosage. J Hepatol 2009; 50 (05) 958-968
  • 104 Chen P, Lee P, Han K. et al. A phase III trial of muparfostat (PI-88) as adjuvant therapy in patients with hepatitis virus related hepatocellular carcinoma (HV-HCC) after resection. Ann Oncol 2017; 28 (Suppl. 05) v209-v268
  • 105 Weissmann M, Arvatz G, Horowitz N. et al. Heparanase-neutralizing antibodies attenuate lymphoma tumor growth and metastasis. Proc Natl Acad Sci U S A 2016; 113 (03) 704-709
  • 106 He X, Brenchley PE, Jayson GC, Hampson L, Davies J, Hampson IN. Hypoxia increases heparanase-dependent tumor cell invasion, which can be inhibited by antiheparanase antibodies. Cancer Res 2004; 64 (11) 3928-3933
  • 107 Peretz T, Miron D, Shlomi Y. et al. Heparanase Activity Neutralizing Anti-heparanase Monoclonal Antibody. Google Patents. 2005
  • 108 Vlodavsky I, Weissmann M, Ilan N, Arvatz G. Heparanase-Neutralizing Monoclonal Antibodies. Google Patents. 2019
  • 109 Thakkar N, Yadavalli T, Jaishankar D, Shukla D. Emerging roles of heparanase in viral pathogenesis. Pathogens 2017; 6 (03) 43
  • 110 Akhtar J, Shukla D. Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry. FEBS J 2009; 276 (24) 7228-7236
  • 111 Rusnati M, Lembo D. Heparan sulfate proteoglycans: a multifaceted target for novel approaches in antiviral drug discovery. J Bioeng Biomed Sci 2016; 6: 177
  • 112 Agelidis AM, Hadigal SR, Jaishankar D, Shukla D. Viral activation of heparanase drives pathogenesis of herpes simplex virus-1. Cell Reports 2017; 20 (02) 439-450
  • 113 Surviladze Z, Sterkand RT, Ozbun MA. Interaction of human papillomavirus type 16 particles with heparan sulfate and syndecan-1 molecules in the keratinocyte extracellular matrix plays an active role in infection. J Gen Virol 2015; 96 (08) 2232-2241
  • 114 Hirshoren N, Bulvik R, Neuman T, Rubinstein AM, Meirovitz A, Elkin M. Induction of heparanase by HPV E6 oncogene in head and neck squamous cell carcinoma. J Cell Mol Med 2014; 18 (01) 181-186
  • 115 Tao YH, Wang Z, Zhou YR. Expression of heparanase in kidney of rats with respiratory syncytial virus nephropathy and its relationship with proteinuria [in Chinese]. Sichuan Da Xue Xue Bao Yi Xue Ban 2014; 45 (02) 212-215 , 224
  • 116 El-Assal ON, Yamanoi A, Ono T, Kohno H, Nagasue N. The clinicopathological significance of heparanase and basic fibroblast growth factor expressions in hepatocellular carcinoma. Clin Cancer Res 2001; 7 (05) 1299-1305
  • 117 Puerta-Guardo H, Glasner DR, Harris E. Dengue virus NS1 disrupts the endothelial glycocalyx, leading to hyperpermeability. PLoS Pathog 2016; 12 (07) e1005738
  • 118 Haringman JJ, Gerlag DM, Smeets TJ. et al. A randomized controlled trial with an anti-CCL2 (anti-monocyte chemotactic protein 1) monoclonal antibody in patients with rheumatoid arthritis. Arthritis Rheum 2006; 54 (08) 2387-2392
  • 119 Bizzarri C, Beccari AR, Bertini R, Cavicchia MR, Giorgini S, Allegretti M. ELR+ CXC chemokines and their receptors (CXC chemokine receptor 1 and CXC chemokine receptor 2) as new therapeutic targets. Pharmacol Ther 2006; 112 (01) 139-149
  • 120 Falsone A, Wabitsch V, Geretti E. et al. Designing CXCL8-based decoy proteins with strong anti-inflammatory activity in vivo. Biosci Rep 2013; 33 (05) 743-754
  • 121 Roblek M, Strutzmann E, Zankl C. et al. Targeting of CCL2–CCR2-Glycosaminoglycan Axis Using a CCL2 decoy protein attenuates metastasis through inhibition of tumor cell seeding. Neoplasia 2016; 18 (01) 49-59
  • 122 Gerlza T, Winkler S, Atlic A. et al. Designing a mutant CCL2-HSA chimera with high glycosaminoglycan-binding affinity and selectivity. Protein Eng Des Sel 2015; 28 (08) 231-240
  • 123 Gerlza T, Nagele M, Gschwandtner M, Winkler S, Kungl A. Designing an improved T-cell mobilising CXCL10 mutant through enhanced GAG binding affinity. Protein Eng Des Sel 2019; 32 (08) 367-373
  • 124 Vanheule V, Boff D, Mortier A. et al. CXCL9-derived peptides differentially inhibit neutrophil migration in vivo through interference with glycosaminoglycan interactions. Front Immunol 2017; 8: 530
  • 125 Vanheule V, Janssens R, Boff D. et al. The positively charged COOH-terminal glycosaminoglycan-binding CXCL9(74-103) peptide inhibits CXCL8-induced neutrophil extravasation and monosodium urate crystal-induced gout in mice. J Biol Chem 2015; 290 (35) 21292-21304
  • 126 Boff D, Crijns H, Janssens R. et al. The chemokine fragment CXCL9(74-103) diminishes neutrophil recruitment and joint inflammation in antigen-induced arthritis. J Leukoc Biol 2018; 104 (02) 413-422
  • 127 Rapraeger AC. Synstatin: a selective inhibitor of the syndecan-1-coupled IGF1R-αvβ3 integrin complex in tumorigenesis and angiogenesis. FEBS J 2013; 280 (10) 2207-2215
  • 128 Warford JR, Lamport A-C, Clements DR. et al. Surfen, a proteoglycan binding agent, reduces inflammation but inhibits remyelination in murine models of Multiple Sclerosis. Acta Neuropathol Commun 2018; 6 (01) 4
  • 129 Gomez R, Young J, Ozbun M. Protamine sulfate may prevent infections by pathogens that require heparan sulfate proteoglycan interactions, including high-and low-risk Human Papillomaviruses and Chlamydia trachomatis. Am Soc Clin Oncol 2019;37(15):
  • 130 Paeschke R, Woskobojnik I, Makarov V, Schmidtke M, Bogner E. DSTP-27 prevents entry of human cytomegalovirus. Antimicrob Agents Chemother 2014; 58 (04) 1963-1971
  • 131 Almer J, Gesslbauer B, Kungl AJ. Therapeutic strategies to target microbial protein-glycosaminoglycan interactions. Biochem Soc Trans 2018; 46 (06) 1505-1515
  • 132 Nok AJ. Arsenicals (melarsoprol), pentamidine and suramin in the treatment of human African trypanosomiasis. Parasitol Res 2003; 90 (01) 71-79
  • 133 Nakajima M, DeChavigny A, Johnson CE, Hamada J, Stein CA, Nicolson GL. Suramin. A potent inhibitor of melanoma heparanase and invasion. J Biol Chem 1991; 266 (15) 9661-9666
  • 134 Tayel A, Abd El Galil KH, Ebrahim MA, Ibrahim AS, El-Gayar AM, Al-Gayyar MM. Suramin inhibits hepatic tissue damage in hepatocellular carcinoma through deactivation of heparanase enzyme. Eur J Pharmacol 2014; 728: 151-160
  • 135 Li H, Li H, Qu H. et al. Suramin inhibits cell proliferation in ovarian and cervical cancer by downregulating heparanase expression. Cancer Cell Int 2015; 15 (01) 52
  • 136 Mohan CD, Hari S, Preetham HD. et al. Targeting heparanase in cancer: inhibition by synthetic, chemically modified, and natural compounds. iScience 2019; 15: 360-390
  • 137 Marchetti D, Reiland J, Erwin B, Roy M. Inhibition of heparanase activity and heparanase-induced angiogenesis by suramin analogues. Int J Cancer 2003; 104 (02) 167-174
  • 138 McCormack S, Ramjee G, Kamali A. et al. PRO2000 vaginal gel for prevention of HIV-1 infection (Microbicides Development Programme 301): a phase 3, randomised, double-blind, parallel-group trial. Lancet 2010; 376 (9749): 1329-1337
  • 139 Zhu AX, Gold PJ, El-Khoueiry AB. et al. First-in-man phase I study of GC33, a novel recombinant humanized antibody against glypican-3, in patients with advanced hepatocellular carcinoma. Clin Cancer Res 2013; 19 (04) 920-928
  • 140 Cheng AL, Yen CJ, Okusaka T. et al. A phase I, open-label, multi-center, dose-escalation study of codrituzumab, an anti-glypican-3 monoclonal antibody, in combination with atezolizumab in patients with locally advanced or metastatic hepatocellular carcinoma. Ann Oncol 2018; 29: 234-235
  • 141 Li K, Pan X, Bi Y. et al. Adoptive immunotherapy using T lymphocytes redirected to glypican-3 for the treatment of lung squamous cell carcinoma. Oncotarget 2016; 7 (03) 2496-2507
  • 142 Yumiko A, Sano Y, Tsunenari T. et al. Abstract 5609: ERY974, a novel T cell-redirecting bispecific antibody targeting glypican-3, shows antitumor activity in gastric cancer patient-derived xenograft models with varying glypican-3 expression. Cancer Res 2018; 78 (13, Suppl): 5609
  • 143 Hanaoka H, Nakajima T, Sato K. et al. Photoimmunotherapy of hepatocellular carcinoma-targeting glypican-3 combined with nanosized albumin-bound paclitaxel. Nanomedicine (Lond) 2015; 10 (07) 1139-1147
  • 144 Fleming BD, Ho M. Glypican-3 targeting immunotoxins for the treatment of liver cancer. Toxins (Basel) 2016; 8 (10) 274
  • 145 Zhang T, Lu Y, Zeng Z. et al. Phase I dose escalating trail of GPC3-targeted CAR-T cells by intratumor injection for advanced hepatocellular carcinoma. Cytotherapy 2019; 21 (05) S10
  • 146 Sawada Y, Yoshikawa T, Nobuoka D. et al. Phase I trial of a glypican-3-derived peptide vaccine for advanced hepatocellular carcinoma: immunologic evidence and potential for improving overall survival. Clin Cancer Res 2012; 18 (13) 3686-3696
  • 147 Sawada Y, Yoshikawa T, Ofuji K. et al. Phase II study of the GPC3-derived peptide vaccine as an adjuvant therapy for hepatocellular carcinoma patients. OncoImmunology 2016; 5 (05) e1129483
  • 148 Basche M, Gustafson DL, Holden SN. et al. A phase I biological and pharmacologic study of the heparanase inhibitor PI-88 in patients with advanced solid tumors. Clin Cancer Res 2006; 12 (18) 5471-5480
  • 149 Galli M, Chatterjee M, Grasso M. et al. Phase I study of the heparanase inhibitor roneparstat: an innovative approach for multiple myeloma therapy. Haematologica 2018; 103 (10) e469-e472
  • 150 Feng M, Gao W, Wang R, Chen W, Man YG, Figg WD, Wang XW, Dimitrov DS, Ho M. Therapeutically targeting glypican-3 via a conformation-specific single-domain antibody in hepatocellular carcinoma. Proc Natl Acad Sci USA 2013; 110 (12) E1083-E1091