CC BY-NC-ND 4.0 · Organic Materials 2021; 03(02): 146-154
DOI: 10.1055/s-0041-1727182
Focus Issue: Peter Bäuerle 65th Birthday
Short Review

Supramolecular Approaches for Taming the Chemo- and Regiochemistry of C60 Addition Reactions

a   Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
b   Current address: Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
,
a   Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
› Author Affiliations
Funding Information We are grateful for financial support from the Deutsche Forschungsgemeinschaft (DFG, 182849149-SFB953, 364549901–TRR 234, DE1830/1, DE1830/5), the European Research Council (ERCstg 802428 SUPRANET) and the University of Ulm.


Abstract

The chemo- and regioselective functionalization of fullerenes is a long-standing problem of organic synthesis. Over the past five years, this fundamental challenge has gained technological relevance, because studies on single bis-adduct isomers in new-generation solar cells have demonstrated that the widespread use of isomer mixtures leads to suboptimal power conversion efficiencies. Herein, we review recent work on supramolecular approaches for achieving chemo- and regioselective syntheses of multiply functionalized derivatives of C60.

Dedicated to Prof. Peter Bäuerle on the occasion of his 65th birthday.




Publication History

Received: 15 January 2021

Accepted: 09 February 2021

Article published online:
01 April 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR. Nature 1990; 347: 354
    • 1b Krätschmer W. Nanoscale 2011; 3: 2485
  • 3 Puente Santiago AR, Fernandez-Delgado O, Gomez A, Ahsan MA, Echegoyen L. Angew. Chem. Int. Ed. 2021; 60: 122
  • 4 Maggini M, Scorrano G, Prato M. J. Am. Chem. Soc. 1993; 115: 9798
    • 6a Hirsch A, Lamparth I, Karfunkel HR. Angew. Chem. Int. Ed. Engl. 1994; 33: 437
    • 6b Djojo F, Herzog A, Lamparth I, Hampel F, Hirsch A. Chem. Eur. J. 1996; 2: 1537
    • 6c Hirsch A, Lamparth I, Groesser T, Karfunkel HR. J. Am. Chem. Soc. 1994; 116: 9385
    • 7a Suzuki T, Li Q, Khemani KC, Wudl F, Almarsson O. Science 1991; 254: 1186
    • 7b Hummelen JC, Knight BW, LePeq F, Wudl F, Yao J, Wilkins CL. J. Org. Chem. 1995; 60: 532
  • 8 Umeyama T, Imahori H. Acc. Chem. Res. 2019; 52: 2046
  • 9 He Y, Chen H.-Y, Hou J, Li Y. J. Am. Chem. Soc. 2010; 132: 1377
    • 10a Yan C, Barlow S, Wang Z, Yan H, Jen AK. Y, Marder SR, Zhan X. Nat. Rev. Mater. 2018; 3: 18003
    • 10b Cheng P, Li G, Zhan X, Yang Y. Nat. Photonics 2018; 12: 131
    • 10c Yu Z.-P, Liu Z.-X, Chen F.-X, Qin R, Lau T.-K, Yin J.-L, Kong X, Lu X, Shi M, Li C.-Z, Chen H. Nat. Commun. 2019; 10: 2152
    • 10d Hou J, Inganäs O, Friend RH, Gao F. Nat. Mater. 2018; 17: 119
    • 10e Nian L, Kan Y, Gao K, Zhang M, Li N, Zhou G, Jo SB, Shi X, Lin F, Rong Q, Liu F, Zhou G, Jen AK. Y. Joule 2020; 4: 2223
    • 10f Yuan J, Zhang Y, Zhou L, Zhang G, Yip H.-L, Lau T.-K, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule 2019; 3: 1140
    • 10g Yao J, Qiu B, Zhang Z.-G, Xue L, Wang R, Zhang C, Chen S, Zhou Q, Sun C, Yang C, Xiao M, Meng L, Li Y. Nat. Commun. 2020; 11: 2726
    • 10h Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng J, Wei Z, Gao F, Hou J. Nat. Commun. 2019; 10: 2515
  • 11 Fuertes-Espinosa C, Pujals M, Ribas X. Chem 2020; 6: 3219
  • 12 Berger PR, Kim M. J. Renewable Sustainable Energy 2018; 10: 013508
    • 13a Anthopoulos TD, Tanase C, Setayesh S, Meijer EJ, Hummelen JC, Blom PW. M, de Leeuw DM. Adv. Mater. 2004; 16: 2174
    • 13b Dodabalapur A, Katz HE, Torsi L, Haddon RC. Science 1995; 269: 1560
    • 13c Haddon RC, Perel AS, Morris RC, Palstra TT. M, Hebard AF, Fleming RM. Appl. Phys. Lett. 1995; 67: 121
    • 13d Dodabalapur A, Katz HE, Torsi L, Haddon RC. Appl. Phys. Lett. 1996; 68: 1108
    • 13e Meijer EJ, de Leeuw DM, Setayesh S, van Veenendaal E, Huisman BH, Blom PW. M, Hummelen JC, Scherf U, Kadam J, Klapwijk TM. Nat. Mater. 2003; 2: 678
    • 13f Newman CR, Frisbie CD, da Silva Filho DA, Brédas J.-L, Ewbank PC, Mann KR. Chem. Mater. 2004; 16: 4436
  • 14 He Y, Li Y. Phys. Chem. Chem. Phys. 2011; 13: 1970
    • 15a Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat. Energy 2016; 1: 15027
    • 15b Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat. Commun. 2014; 5: 5293
  • 16 Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip H.-L, Cao Y, Chen Y. Science 2018; 361: 1094
  • 17 Kim Y, Cho C.-H, Kang H, Kim K.-H, Park S, Kang TE, Park K, Kim BJ. Sol. Energy Mater. Sol. Cells 2015; 141: 87
    • 18a Lenes M, Wetzelaer G.-J. A. H, Kooistra FB, Veenstra SC, Hummelen JC, Blom PW. M. Adv. Mater. 2008; 20: 2116
    • 18b Li Y. Chem. Asian J. 2013; 8: 2316
    • 18c Deng L.-L, Xie S.-Y, Gao F. Adv. Electron. Mater. 2018; 4: 1700435
    • 18d Li Y. Acc. Chem. Res. 2012; 45: 723
    • 18e Castro E, Murillo J, Fernandez-Delgado O, Echegoyen L. J. Mater. Chem. C 2018; 6: 2635
    • 18f Lai Y.-Y, Cheng Y.-J, Hsu C.-S. Energy Environ. Sci. 2014; 7: 1866
    • 19a Gadisa A, Svensson M, Andersson MR, Inganäs O. Appl. Phys. Lett. 2004; 84: 1609
    • 19b Hoppe H, Egbe DA. M, Mühlbacher D, Sariciftci NS. J. Mater. Chem. 2004; 14: 3462
    • 19c Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ. Adv. Mater. 2006; 18: 789
    • 19d Morvillo P, Bobeico E. Sol. Energy Mater. Sol. Cells 2008; 92: 1192
  • 20 Janssen RA. J, Nelson J. Adv. Mater. 2013; 25: 1847
    • 21a Coakley KM, McGehee MD. Chem. Mater. 2004; 16: 4533
    • 21b Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y. Nat. Mater. 2005; 4: 864
    • 21c Ball JM, Bouwer RK. M, Kooistra FB, Frost JM, Qi Y, Domingo EB, Smith J, Leeuw DM. d, Hummelen JC, Nelson J, Kahn A, Stingelin N, Bradley DD. C, Anthopoulos TD. J. Appl. Phys. 2011; 110: 014506
    • 22a Distler A, Sauermann T, Egelhaaf H.-J, Rodman S, Waller D, Cheon K.-S, Lee M, Guldi DM. Adv. Energy Mater. 2014; 4: 1300693
    • 22b Heumueller T, Mateker WR, Distler A, Fritze UF, Cheacharoen R, Nguyen WH, Biele M, Salvador M, von Delius M, Egelhaaf H.-J, McGehee MD, Brabec CJ. Energy Environ. Sci. 2016; 9: 247
  • 23 Wang CI, Hua CC. J. Phys. Chem. B 2015; 119: 14496
  • 24 Cao T, Chen N, Liu G, Wan Y, Perea JD, Xia Y, Wang Z, Song B, Li N, Li X, Zhou Y, Brabec CJ, Li Y. J. Mater. Chem. A 2017; 5: 10206
    • 25a Kitaura S, Kurotobi K, Sato M, Takano Y, Umeyama T, Imahori H. Chem. Commun. 2012; 48: 8550
    • 25b Meng X, Zhao G, Xu Q, Tan Za, Zhang Z, Jiang L, Shu C, Wang C, Li Y. Adv. Funct. Mater. 2014; 24: 158
    • 25c Tao R, Umeyama T, Kurotobi K, Imahori H. ACS Appl. Mater. Interfaces 2014; 6: 17313
    • 26a Sabirov DS. J. Phys. Chem. C 2013; 117: 9148
    • 26b Bouwer RK. M, Wetzelaer G.-J. A. H, Blom PW. M, Hummelen JC. J. Mater. Chem. 2012; 22: 15412
    • 26c Liao M.-H, Lai Y.-Y, Lai Y.-Y, Chen Y.-T, Tsai C.-E, Liang W.-W, Cheng Y.-J. ACS Appl. Mater. Interfaces 2014; 6: 996
    • 26d Cerón MR, Izquierdo M, Aghabali A, Valdez JA, Ghiassi KB, Olmstead MM, Balch AL, Wudl F, Echegoyen L. J. Am. Chem. Soc. 2015; 137: 7502
  • 27 Shi W, Hou X, Liu T, Zhao X, Sieval AB, Hummelen JC, Dennis TJ. S. Chem. Commun. 2017; 53: 975
  • 28 Lin Y, Chen B, Zhao F, Zheng X, Deng Y, Shao Y, Fang Y, Bai Y, Wang C, Huang J. Adv. Mater. 2017; 29: 1700607
  • 29 Zhang F, Shi W, Luo J, Pellet N, Yi C, Li X, Zhao X, Dennis TJ. S, Li X, Wang S, Xiao Y, Zakeeruddin SM, Bi D, Grätzel M. Adv. Mater. 2017; 29: 1606806
  • 30 Zhao F, Meng X, Feng Y, Jin Z, Zhou Q, Li H, Jiang L, Wang J, Li Y, Wang C. J. Mater. Chem. A 2015; 3: 14991
    • 31a Dai S.-M, Zhang X, Chen W.-Y, Li X, Tan Za, Li C, Deng L.-L, Zhan X.-X, Lin M.-S, Xing Z, Wen T, Ho R.-M, Xie S.-Y, Huang R.-B, Zheng L.-S. J. Mater. Chem. A 2016; 4: 18776
    • 31b Herrmann A, Rüttimann M, Thilgen C, Diederich F. Helv. Chim. Acta 1995; 78: 1673
    • 31c Guo X, Cui C, Zhang M, Huo L, Huang Y, Hou J, Li Y. Energy Environ. Sci. 2012; 5: 7943
    • 31d Kutsarov DI, Rašović I, Zachariadis A, Laskarakis A, Lebedeva MA, Porfyrakis K, Mills CA, Beliatis MJ, Fisher B, Bruchlos K, Ludwigs S, Logothetidis S, Silva SR. P. Adv. Electron. Mater. 2016; 2: 1600362
    • 31e Wong WW. H, Subbiah J, White JM, Seyler H, Zhang B, Jones DJ, Holmes AB. Chem. Mater. 2014; 26: 1686
    • 31f Tao R, Umeyama T, Higashino T, Koganezawa T, Imahori H. ACS Appl. Mater. Interfaces 2015; 7: 16676
    • 31g Umeyama T, Takahara S, Shibata S, Igarashi K, Higashino T, Mishima K, Yamashita K, Imahori H. RSC Adv. 2018; 8: 18316
    • 31h Umeyama T, Miyata T, Jakowetz AC, Shibata S, Kurotobi K, Higashino T, Koganezawa T, Tsujimoto M, Gélinas S, Matsuda W, Seki S, Friend RH, Imahori H. Chem. Sci. 2017; 8: 181
    • 31i Umeyama T, Shibata S, Miyata T, Igarashi K, Koganezawa T, Imahori H. RSC Adv 2017; 7: 45697
    • 31j Umeyama T, Igarashi K, Sakamaki D, Seki S, Imahori H. Chem. Commun. 2018; 54: 405
  • 32 Isaacs L, Haldimann RF, Diederich F. Angew. Chem. Int. Ed. Engl. 1994; 33: 2339
    • 33a Kräutler B, Müller T, Maynollo J, Gruber K, Kratky C, Ochsenbein P, Schwarzenbach D, Bürgi H.-B. Angew. Chem. Int. Ed. Engl. 1996; 35: 1204
    • 33b Isaacs L, Diederich F, Haldimann RF. Helv. Chim. Acta 1997; 80: 317
    • 33c Schwenninger R, Müller T, Kräutler B. J. Am. Chem. Soc. 1997; 119: 9317
    • 33d Qian W, Rubin Y. J. Am. Chem. Soc. 2000; 122: 9564
    • 33e Beuerle F, Chronakis N, Hirsch A. Chem. Commun. 2005; 29: 3676
    • 33f Beuerle F, Hirsch A. Chem. Eur. J. 2009; 15: 7434
    • 33g Ortiz AL, Echegoyen L. J. Mater. Chem. 2011; 21: 1362
    • 33h Hörmann F, Donaubauer W, Hampel F, Hirsch A. Chem. Eur. J. 2012; 18: 3329
    • 33i Tao R, Umeyama T, Higashino T, Koganezawa T, Imahori H. Chem. Commun. 2015; 51: 8233
  • 34 Xiao Z, Geng X, He D, Jia X, Ding L. Energy Environ. Sci. 2016; 9: 2114
  • 35 Dannhäuser J, Donaubauer W, Hampel F, Reiher M, Le Guennic B, Corzilius B, Dinse K.-P, Hirsch A. Angew. Chem. Int. Ed. 2006; 45: 3368
  • 36 We use the term Bingel reaction for reactions between fullerenes and bromo malonates [see ref. 5a] and the term Bingel
  • 37 Bottari G, Trukhina O, Kahnt A, Frunzi M, Murata Y, Rodríguez-Fortea A, Poblet JM, Guldi DM, Torres T. Angew. Chem. Int. Ed. 2016; 55: 11020
  • 38 Đorđević L, Casimiro L, Demitri N, Baroncini M, Silvi S, Arcudi F, Credi A, Prato M. Angew. Chem. Int. Ed. 2021; 60: 313
  • 39 Xu Y, Kaur R, Wang B, Minameyer MB, Gsänger S, Meyer B, Drewello T, Guldi DM, von Delius M. J. Am. Chem. Soc. 2018; 140: 13413
    • 40a Iwamoto T, Watanabe Y, Sadahiro T, Haino T, Yamago S. Angew. Chem. Int. Ed. 2011; 50: 8342
    • 40b Xia J, Bacon JW, Jasti R. Chem. Sci. 2012; 3: 3018
    • 40c Xu Y, von Delius M. Angew. Chem. Int. Ed. 2020; 59: 559
    • 41a Lewis SE. Chem. Soc. Rev. 2015; 44: 2221
    • 41b Hermann M, Wassy D, Esser B. Author Manuscript, Accepted DOI: 10.1002/anie.202007024.
    • 41c Patel VK, Kayahara E, Yamago S. Chem. Eur. J. 2015; 21: 5742
    • 41d Griwatz JH, Wegner HA. Org. Mater. 2020; 2: 306
    • 41e Darzi ER, Hirst ES, Weber CD, Zakharov LN, Lonergan MC, Jasti R. ACS Cent. Sci. 2015; 1: 335
    • 41f Frydrych R, Lis T, Bury W, Cybińska J, Stępień M. J. Am. Chem. Soc. 2020; 142: 15604
    • 41g Chen M, Unikela KS, Ramalakshmi R, Li B, Darrigan C, Chrostowska A, Liu S.-Y. Angew. Chem. Int. Ed. 2021; 60: 1556
    • 41h Tran-Van A.-F, Wegner HA. Beilstein J. Nanotechnol. 2014; 5: 1320
    • 42a García-Simón C, Costas M, Ribas X. Chem. Soc. Rev. 2016; 45: 40
    • 42b Tashiro K, Aida T. Chem. Soc. Rev. 2007; 36: 189
    • 42c Markiewicz G, Jenczak A, Kołodziejski M, Holstein JJ, Sanders JK. M, Stefankiewicz AR. Nat. Commun. 2017; 8: 15109
    • 42d Wood DM, Meng W, Ronson TK, Stefankiewicz AR, Sanders JK. M, Nitschke JR. Angew. Chem. Int. Ed. 2015; 54: 3988
    • 42e Chen B, Horiuchi S, Holstein JJ, Tessarolo J, Clever GH. Chem. Eur. J. 2019; 25: 14921
    • 42f Boyd PD. W, Reed CA. Acc. Chem. Res. 2005; 38: 235
  • 43 Chen B, Holstein JJ, Horiuchi S, Hiller WG, Clever GH. J. Am. Chem. Soc. 2019; 141: 8907
  • 44 García-Simón C, Garcia-Borràs M, Gómez L, Parella T, Osuna S, Juanhuix J, Imaz I, Maspoch D, Costas M, Ribas X. Nat. Commun. 2014; 5: 5557
  • 45 Brenner W, Ronson TK, Nitschke JR. J. Am. Chem. Soc. 2017; 139: 75
  • 46 Leonhardt V, Fimmel S, Krause A.-M, Beuerle F. Chem. Sci. 2020; 11: 8409
  • 47 Fuertes-Espinosa C, García-Simón C, Pujals M, Garcia-Borràs M, Gómez L, Parella T, Juanhuix J, Imaz I, Maspoch D, Costas M, Ribas X. Chem 2020; 6: 169
  • 48 Hasegawa S, Clever GH. Chem 2020; 6: 5
  • 49 Ubasart E, Borodin O, Fuertes-Espinosa C, Xu Y, García-Simón C, Gómez L, Juanhuix J, Gándara F, Imaz I, Maspoch D, von Delius M, Ribas X. Nat. Chem. 2021; , In press DOI: 10.1038/s41557-021-00658-6.