Semin Liver Dis 2021; 41(03): 331-348
DOI: 10.1055/s-0041-1729972
Review Article

Drug-Induced Vanishing Bile Duct Syndrome: From Pathogenesis to Diagnosis and Therapeutics

Fernando Bessone
1   Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
,
Nelia Hernández
2   Clínica de Gastroenterología, Hospital de Clínicas y Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
,
Mario Tanno
1   Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
,
Marcelo G. Roma
3   Instituto de Fisiología Experimental (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
› Author Affiliations

Abstract

The most concerned issue in the context of drug/herb-induced chronic cholestasis is vanishing bile duct syndrome. The progressive destruction of intrahepatic bile ducts leading to ductopenia is usually not dose dependent, and has a delayed onset that should be suspected when abnormal serum cholestasis enzyme levels persist despite drug withdrawal. Immune-mediated cholangiocyte injury, direct cholangiocyte damage by drugs or their metabolites once in bile, and sustained exposure to toxic bile salts when biliary epithelium protective defenses are impaired are the main mechanisms of cholangiolar damage. Current therapeutic alternatives are scarce and have not shown consistent beneficial effects so far. This review will summarize the current literature on the main diagnostic tools of ductopenia and its histological features, and the differential diagnostic with other ductopenic diseases. In addition, pathomechanisms will be addressed, as well as the connection between them and the supportive and curative strategies for ductopenia management.

Financial Support and Disclosures

None.




Publication History

Article published online:
15 June 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Degott C, Feldmann G, Larrey D. et al. Drug-induced prolonged cholestasis in adults: a histological semiquantitative study demonstrating progressive ductopenia. Hepatology 1992; 15 (02) 244-251
  • 2 Desmet VJ. Vanishing bile duct syndrome in drug-induced liver disease. J Hepatol 1997; 26 (Suppl. 01) 31-35
  • 3 Lockshin RA, Zakeri Z. Apoptosis, autophagy, and more. Int J Biochem Cell Biol 2004; 36 (12) 2405-2419
  • 4 Yang F, Gaudio E, Onori P, Wise C, Alpini G, Glaser SS. Mechanisms of biliary damage. J Cell Death 2010; 3: 13-21
  • 5 Nakanuma Y, Sasaki M, Harada K. Autophagy and senescence in fibrosing cholangiopathies. J Hepatol 2015; 62 (04) 934-945
  • 6 Guicciardi ME, Malhi H, Mott JL, Gores GJ. Apoptosis and necrosis in the liver. Compr Physiol 2013; 3 (02) 977-1010
  • 7 Jin Z, El-Deiry WS. Overview of cell death signaling pathways. Cancer Biol Ther 2005; 4 (02) 139-163
  • 8 Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006; 25 (34) 4798-4811
  • 9 Guicciardi ME, Gores GJ. Life and death by death receptors. FASEB J 2009; 23 (06) 1625-1637
  • 10 Waring P, Müllbacher A. Cell death induced by the Fas/Fas ligand pathway and its role in pathology. Immunol Cell Biol 1999; 77 (04) 312-317
  • 11 Shuai Z, Leung MW, He X. et al. Adaptive immunity in the liver. Cell Mol Immunol 2016; 13 (03) 354-368
  • 12 Afford SC, Adams DH. Following the TRAIL from hepatitis C virus and alcohol to fatty liver. Gut 2005; 54 (11) 1518-1520
  • 13 Tabibian JH, O'Hara SP, Splinter PL, Trussoni CE, LaRusso NF. Cholangiocyte senescence by way of N-ras activation is a characteristic of primary sclerosing cholangitis. Hepatology 2014; 59 (06) 2263-2275
  • 14 Brain JG, Robertson H, Thompson E. et al. Biliary epithelial senescence and plasticity in acute cellular rejection. Am J Transplant 2013; 13 (07) 1688-1702
  • 15 Guicciardi ME, Trussoni CE, LaRusso NF, Gores GJ. The spectrum of reactive cholangiocytes in primary sclerosing cholangitis. Hepatology 2020; 71 (02) 741-748
  • 16 Adams DH, Afford SC. The role of cholangiocytes in the development of chronic inflammatory liver disease. Front Biosci 2002; 7: e276-e285
  • 17 Humphreys EH, Williams KT, Adams DH, Afford SC. Primary and malignant cholangiocytes undergo CD40 mediated Fas dependent apoptosis, but are insensitive to direct activation with exogenous Fas ligand. PLoS One 2010; 5 (11) e14037
  • 18 Afford SC, Ahmed-Choudhury J, Randhawa S. et al. CD40 activation-induced, Fas-dependent apoptosis and NF-kappaB/AP-1 signaling in human intrahepatic biliary epithelial cells. FASEB J 2001; 15 (13) 2345-2354
  • 19 Celli A, Que FG. Dysregulation of apoptosis in the cholangiopathies and cholangiocarcinoma. Semin Liver Dis 1998; 18 (02) 177-185
  • 20 Takeda K, Kojima Y, Ikejima K. et al. Death receptor 5 mediated-apoptosis contributes to cholestatic liver disease. Proc Natl Acad Sci U S A 2008; 105 (31) 10895-10900
  • 21 Meng L, Quezada M, Levine P. et al. Functional role of cellular senescence in biliary injury. Am J Pathol 2015; 185 (03) 602-609
  • 22 Sasaki M, Ikeda H, Haga H, Manabe T, Nakanuma Y. Frequent cellular senescence in small bile ducts in primary biliary cirrhosis: a possible role in bile duct loss. J Pathol 2005; 205 (04) 451-459
  • 23 Ferreira-Gonzalez S, Lu WY, Raven A. et al. Paracrine cellular senescence exacerbates biliary injury and impairs regeneration. Nat Commun 2018; 9 (01) 1020
  • 24 Sedlaczek N, Jia JD, Bauer M. et al. Proliferating bile duct epithelial cells are a major source of connective tissue growth factor in rat biliary fibrosis. Am J Pathol 2001; 158 (04) 1239-1244
  • 25 Nakanuma Y, Tsuneyama K, Harada K. Pathology and pathogenesis of intrahepatic bile duct loss. J Hepatobiliary Pancreat Surg 2001; 8 (04) 303-315
  • 26 Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y. Modulation of the microenvironment by senescent biliary epithelial cells may be involved in the pathogenesis of primary biliary cirrhosis. J Hepatol 2010; 53 (02) 318-325
  • 27 Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008; 9 (01) 47-59
  • 28 Adams DH, Afford SC. Effector mechanisms of nonsuppurative destructive cholangitis in graft-versus-host disease and allograft rejection. Semin Liver Dis 2005; 25 (03) 281-297
  • 29 Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol 2015; 15 (06) 388-400
  • 30 Patel T, Gores GJ. Apoptosis and hepatobiliary disease. Hepatology 1995; 21 (06) 1725-1741
  • 31 Chinopoulos C, Adam-Vizi V. Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme. FEBS J 2006; 273 (03) 433-450
  • 32 Parola M, Cheeseman KH, Biocca ME, Dianzani MU, Slater TF. Biochemical studies on bile duct epithelial cells isolated from rat liver. J Hepatol 1990; 10 (03) 341-345
  • 33 Celli A, Que FG, Gores GJ, LaRusso NF. Glutathione depletion is associated with decreased Bcl-2 expression and increased apoptosis in cholangiocytes. Am J Physiol 1998; 275 (04) G749-G757
  • 34 Foufelle F, Fromenty B. Role of endoplasmic reticulum stress in drug-induced toxicity. Pharmacol Res Perspect 2016; 4 (01) e00211
  • 35 Kapoor A, Sanyal AJ. Endoplasmic reticulum stress and the unfolded protein response. Clin Liver Dis 2009; 13 (04) 581-590
  • 36 Faitova J, Krekac D, Hrstka R, Vojtesek B. Endoplasmic reticulum stress and apoptosis. Cell Mol Biol Lett 2006; 11 (04) 488-505
  • 37 Lamkanfi M, Kalai M, Vandenabeele P. Caspase-12: an overview. Cell Death Differ 2004; 11 (04) 365-368
  • 38 Scorrano L, Oakes SA, Opferman JT. et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 2003; 300 (5616): 135-139
  • 39 Malhi H, Kaufman RJ. Endoplasmic reticulum stress in liver disease. J Hepatol 2011; 54 (04) 795-809
  • 40 Sasaki M, Yoshimura-Miyakoshi M, Sato Y, Nakanuma Y. A possible involvement of endoplasmic reticulum stress in biliary epithelial autophagy and senescence in primary biliary cirrhosis. J Gastroenterol 2015; 50 (09) 984-995
  • 41 Sasaki M, Nakanuma Y. Bile acids and deregulated cholangiocyte autophagy in primary biliary cholangitis. Dig Dis 2017; 35 (03) 210-216
  • 42 Eguchi Y, Shimizu S, Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 1997; 57 (10) 1835-1840
  • 43 Lemasters JJ, Qian T, He L. et al. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal 2002; 4 (05) 769-781
  • 44 Kim JS, He L, Lemasters JJ. Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 2003; 304 (03) 463-470
  • 45 Xia X, Demorrow S, Francis H. et al. Cholangiocyte injury and ductopenic syndromes. Semin Liver Dis 2007; 27 (04) 401-412
  • 46 Cursio R, Gugenheim J. Ischemia-reperfusion injury and ischemic-type biliary lesions following liver transplantation. J Transplant 2012; 2012: 164329
  • 47 Lesage G, Glaser S, Ueno Y. et al. Regression of cholangiocyte proliferation after cessation of ANIT feeding is coupled with increased apoptosis. Am J Physiol Gastrointest Liver Physiol 2001; 281 (01) G182-G190
  • 48 Moritoki Y, Ueno Y, Kanno N. et al. Amniotic epithelial cell-derived cholangiocytes in experimental cholestatic ductal hyperplasia. Hepatol Res 2007; 37 (04) 286-294
  • 49 Dietrich CG, Ottenhoff R, de Waart DR, Oude Elferink RP. Role of MRP2 and GSH in intrahepatic cycling of toxins. Toxicology 2001; 167 (01) 73-81
  • 50 Tanaka Y, Aleksunes LM, Cui YJ, Klaassen CD. ANIT-induced intrahepatic cholestasis alters hepatobiliary transporter expression via Nrf2-dependent and independent signaling. Toxicol Sci 2009; 108 (02) 247-257
  • 51 Davies MH, Harrison RF, Elias E, Hübscher SG. Antibiotic-associated acute vanishing bile duct syndrome: a pattern associated with severe, prolonged, intrahepatic cholestasis. J Hepatol 1994; 20 (01) 112-116
  • 52 Lakehal F, Dansette PM, Becquemont L. et al. Indirect cytotoxicity of flucloxacillin toward human biliary epithelium via metabolite formation in hepatocytes. Chem Res Toxicol 2001; 14 (06) 694-701
  • 53 Lakehal F, Wendum D, Barbu V. et al. Phase I and phase II drug-metabolizing enzymes are expressed and heterogeneously distributed in the biliary epithelium. Hepatology 1999; 30 (06) 1498-1506
  • 54 Padda MS, Sanchez M, Akhtar AJ, Boyer JL. Drug-induced cholestasis. Hepatology 2011; 53 (04) 1377-1387
  • 55 Geubel AP, Sempoux CL. Drug and toxin-induced bile duct disorders. J Gastroenterol Hepatol 2000; 15 (11) 1232-1238
  • 56 Liu ZX, Kaplowitz N. Immune-mediated drug-induced liver disease. Clin Liver Dis 2002; 6 (03) 755-774
  • 57 Carey MA, van Pelt FN. Immunochemical detection of flucloxacillin adduct formation in livers of treated rats. Toxicology 2005; 216 (01) 41-48
  • 58 Jenkins RE, Meng X, Elliott VL, Kitteringham NR, Pirmohamed M, Park BK. Characterisation of flucloxacillin and 5-hydroxymethyl flucloxacillin haptenated HSA in vitro and in vivo. Proteomics Clin Appl 2009; 3 (06) 720-729
  • 59 Meng X, Earnshaw CJ, Tailor A. et al. Amoxicillin and clavulanate form chemically and immunologically distinct multiple haptenic structures in patients. Chem Res Toxicol 2016; 29 (10) 1762-1772
  • 60 Ariza A, Garzon D, Abánades DR. et al. Protein haptenation by amoxicillin: high resolution mass spectrometry analysis and identification of target proteins in serum. J Proteomics 2012; 77: 504-520
  • 61 Bu HZ, Kang P, Deese AJ, Zhao P, Pool WF. Human in vitro glutathionyl and protein adducts of carbamazepine-10,11-epoxide, a stable and pharmacologically active metabolite of carbamazepine. Drug Metab Dispos 2005; 33 (12) 1920-1924
  • 62 Naisbitt DJ, Farrell J, Gordon SF. et al. Covalent binding of the nitroso metabolite of sulfamethoxazole leads to toxicity and major histocompatibility complex-restricted antigen presentation. Mol Pharmacol 2002; 62 (03) 628-637
  • 63 Iverson SL, Uetrecht JP. Identification of a reactive metabolite of terbinafine: insights into terbinafine-induced hepatotoxicity. Chem Res Toxicol 2001; 14 (02) 175-181
  • 64 Tujios S, Fontana RJ. Mechanisms of drug-induced liver injury: from bedside to bench. Nat Rev Gastroenterol Hepatol 2011; 8 (04) 202-211
  • 65 Crispe IN. Liver antigen-presenting cells. J Hepatol 2011; 54 (02) 357-365
  • 66 Pichler WJ. Pharmacological interaction of drugs with antigen-specific immune receptors: the p-i concept. Curr Opin Allergy Clin Immunol 2002; 2 (04) 301-305
  • 67 Banales JM, Huebert RC, Karlsen T, Strazzabosco M, LaRusso NF, Gores GJ. Cholangiocyte pathobiology. Nat Rev Gastroenterol Hepatol 2019; 16 (05) 269-281
  • 68 Gao B. Natural killer group 2 member D, its ligands, and liver disease: good or bad?. Hepatology 2010; 51 (01) 8-11
  • 69 Chen XM, O'Hara SP, LaRusso NF. The immunobiology of cholangiocytes. Immunol Cell Biol 2008; 86 (06) 497-505
  • 70 Heydtmann M, Lalor PF, Eksteen JA, Hübscher SG, Briskin M, Adams DH. CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver. J Immunol 2005; 174 (02) 1055-1062
  • 71 Pinto C, Giordano DM, Maroni L, Marzioni M. Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology. Biochim Biophys Acta Mol Basis Dis 2018; 1864 (4, Pt B): 1270-1278
  • 72 Katsumi T, Guicciardi ME, Azad A, Bronk SF, Krishnan A, Gores GJ. Activated cholangiocytes release macrophage-polarizing extracellular vesicles bearing the DAMP S100A11. Am J Physiol Cell Physiol 2019; 317 (04) C788-C799
  • 73 Rock KL, Kono H. The inflammatory response to cell death. Annu Rev Pathol 2008; 3: 99-126
  • 74 Malhi H, Guicciardi ME, Gores GJ. Hepatocyte death: a clear and present danger. Physiol Rev 2010; 90 (03) 1165-1194
  • 75 O'Hara SP, Tabibian JH, Splinter PL, LaRusso NF. The dynamic biliary epithelia: molecules, pathways, and disease. J Hepatol 2013; 58 (03) 575-582
  • 76 Foell D, Wittkowski H, Roth J. Mechanisms of disease: a ‘DAMP’ view of inflammatory arthritis. Nat Clin Pract Rheumatol 2007; 3 (07) 382-390
  • 77 Chen XM, O'Hara SP, Nelson JB. et al. Multiple TLRs are expressed in human cholangiocytes and mediate host epithelial defense responses to Cryptosporidium parvum via activation of NF-kappaB. J Immunol 2005; 175 (11) 7447-7456
  • 78 Hautekeete ML, Horsmans Y, Van Waeyenberge C. et al. HLA association of amoxicillin-clavulanate--induced hepatitis. Gastroenterology 1999; 117 (05) 1181-1186
  • 79 Kindmark A, Jawaid A, Harbron CG. et al. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J 2008; 8 (03) 186-195
  • 80 Singer JB, Lewitzky S, Leroy E. et al. A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat Genet 2010; 42 (08) 711-714
  • 81 Daly AK, Donaldson PT, Bhatnagar P. et al; DILIGEN Study, International SAE Consortium. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 2009; 41 (07) 816-819
  • 82 Lucena MI, Molokhia M, Shen Y. et al; Spanish DILI Registry, EUDRAGENE, DILIN, DILIGEN, International SAEC. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology 2011; 141 (01) 338-347
  • 83 Trauner M, Fickert P, Halilbasic E, Moustafa T. Lessons from the toxic bile concept for the pathogenesis and treatment of cholestatic liver diseases. Wien Med Wochenschr 2008; 158 (19-20): 542-548
  • 84 Salas-Silva S, Simoni-Nieves A, Lopez-Ramirez J. et al. Cholangiocyte death in ductopenic cholestatic cholangiopathies: mechanistic basis and emerging therapeutic strategies. Life Sci 2019; 218: 324-339
  • 85 Hohenester S, Maillette de Buy Wenniger L, Jefferson DM, Oude Elferink RP, Beuers U. Biliary bicarbonate secretion constitutes a protective mechanism against bile acid-induced injury in man. Dig Dis 2011; 29 (01) 62-65
  • 86 Gotthardt D, Runz H, Keitel V. et al. A mutation in the canalicular phospholipid transporter gene, ABCB4, is associated with cholestasis, ductopenia, and cirrhosis in adults. Hepatology 2008; 48 (04) 1157-1166
  • 87 Kuipers F, Hardonk MJ, Vonk RJ, van der Meer R. Bile secretion of sulfated glycolithocholic acid is required for its cholestatic action in rats. Am J Physiol 1992; 262 (2, Pt 1): G267-G273
  • 88 Kassianides C, Nussenblatt R, Palestine AG, Mellow SD, Hoofnagle JH. Liver injury from cyclosporine A. Dig Dis Sci 1990; 35 (06) 693-697
  • 89 Prieto J, Qian C, García N, Díez J, Medina JF. Abnormal expression of anion exchanger genes in primary biliary cirrhosis. Gastroenterology 1993; 105 (02) 572-578
  • 90 Poupon R, Ping C, Chrétien Y. et al. Genetic factors of susceptibility and of severity in primary biliary cirrhosis. J Hepatol 2008; 49 (06) 1038-1045
  • 91 Strazzabosco M, Fiorotto R, Cadamuro M. et al. Pathophysiologic implications of innate immunity and autoinflammation in the biliary epithelium. Biochim Biophys Acta Mol Basis Dis 2018; 1864 (4, Pt B): 1374-1379
  • 92 Spirlì C, Fabris L, Duner E. et al. Cytokine-stimulated nitric oxide production inhibits adenylyl cyclase and cAMP-dependent secretion in cholangiocytes. Gastroenterology 2003; 124 (03) 737-753
  • 93 Andrade RJ, Robles-Díaz M. Diagnostic and prognostic assessment of suspected drug-induced liver injury in clinical practice. Liver Int 2020; 40 (01) 6-17
  • 94 Medina-Caliz I, Robles-Diaz M, Garcia-Muñoz B. et al; Spanish DILI Registry. Definition and risk factors for chronicity following acute idiosyncratic drug-induced liver injury. J Hepatol 2016; 65 (03) 532-542
  • 95 Hayashi PH, Bjornsson ES. Long-term outcomes after drug-induced liver injury. Curr Hepatol Rep 2018; 17 (03) 292-299
  • 96 Bjornsson ES, Jonasson JG. Drug-induced cholestasis. Clin Liver Dis 2013; 17 (02) 191-209
  • 97 Bessone F, Robles-Diaz M, Hernandez N, Medina-Caliz I, Lucena MI, Andrade RJ. Assessment of Serious acute and chronic idiosyncratic drug-induced liver injury in clinical practice. Semin Liver Dis 2019; 39 (03) 381-394
  • 98 Kleiner DE. The pathology of drug-induced liver injury. Semin Liver Dis 2009; 29 (04) 364-372
  • 99 Woolf GM, Vierling JM. Disappearing intrahepatic bile ducts: the syndromes and their mechanisms. Semin Liver Dis 1993; 13 (03) 261-275
  • 100 Verkade HJ, Bezerra JA, Davenport M. et al. Biliary atresia and other cholestatic childhood diseases: advances and future challenges. J Hepatol 2016; 65 (03) 631-642
  • 101 Sweeney WE, Avne ED. Polycystic kidney disease, autosomal recessive. In: Pagon RA, Adam MP, Ardinger HH. et al, eds. GeneReviews® [Internet]. Seattle, WA: University of Washington; 2001: 1993-2016
  • 102 Bakoyiannis A, Delis S, Triantopoulou C, Dervenis C. Rare cystic liver lesions: a diagnostic and managing challenge. World J Gastroenterol 2013; 19 (43) 7603-7619
  • 103 Gunay-Aygun M. Liver and kidney disease in ciliopathies. Am J Med Genet C Semin Med Genet 2009; 151C (04) 296-306
  • 104 Sinakos E, Papalavrentios L, Chourmouzi D, Dimopoulou D, Drevelegas A, Akriviadis E. The clinical presentation of Von Meyenburg complexes. Hippokratia 2011; 15 (02) 170-173
  • 105 Nguyen KD, Sundaram V, Ayoub WS. Atypical causes of cholestasis. World J Gastroenterol 2014; 20 (28) 9418-9426
  • 106 Parisi GF, Di Dio G, Franzonello C. et al. Liver disease in cystic fibrosis: an update. Hepat Mon 2013; 13 (08) e11215
  • 107 Staufer K, Halilbasic E, Trauner M, Kazemi-Shirazi L. Cystic fibrosis related liver disease--another black box in hepatology. Int J Mol Sci 2014; 15 (08) 13529-13549
  • 108 Kelly E, Greene CM, Carroll TP, McElvaney NG, O'Neill SJ. Alpha-1 antitrypsin deficiency. Respir Med 2010; 104 (06) 763-772
  • 109 Fairbanks KD, Tavill AS. Liver disease in alpha 1-antitrypsin deficiency: a review. Am J Gastroenterol 2008; 103 (08) 2136-2141 , quiz 2142
  • 110 Fischler B, Lamireau T. Cholestasis in the newborn and infant. Clin Res Hepatol Gastroenterol 2014; 38 (03) 263-267
  • 111 Reau NS, Jensen DM. Vanishing bile duct syndrome. Clin Liver Dis 2008; 12 (01) 203-217 , x
  • 112 Ludwig J, Wiesner RH, LaRusso NF. Idiopathic adulthood ductopenia. A cause of chronic cholestatic liver disease and biliary cirrhosis. J Hepatol 1988; 7 (02) 193-199
  • 113 Zen Y, Hubscher S, Nakanuma Y. Bile duct diseases. In: Burt A, Ferrell LD, Hübscher S. eds. MacSween's Pathology of the Liver. Philadelphia, PA: Elsevier; 2018: 515-593
  • 114 Ludwig J. Idiopathic adulthood ductopenia: an update. Mayo Clin Proc 1998; 73 (03) 285-291
  • 115 Bonkovsky HL, Kleiner DE, Gu J. et al; U.S. Drug Induced Liver Injury Network Investigators. Clinical presentations and outcomes of bile duct loss caused by drugs and herbal and dietary supplements. Hepatology 2017; 65 (04) 1267-1277
  • 116 Kleiner DE, Chalasani NP, Lee WM. et al; Drug-Induced Liver Injury Network (DILIN). Hepatic histological findings in suspected drug-induced liver injury: systematic evaluation and clinical associations. Hepatology 2014; 59 (02) 661-670
  • 117 Larrey D, Erlinger S. Drug-induced cholestasis. Baillieres Clin Gastroenterol 1988; 2 (02) 423-452
  • 118 Geubel AP, Sempoux C, Rahier J. Bile duct disorders. Clin Liver Dis 2003; 7 (02) 295-309
  • 119 Roma MG, Toledo FD, Boaglio AC, Basiglio CL, Crocenzi FA, Sánchez Pozzi EJ. Ursodeoxycholic acid in cholestasis: linking action mechanisms to therapeutic applications. Clin Sci (Lond) 2011; 121 (12) 523-544
  • 120 Hofmann AF. Pharmacology of ursodeoxycholic acid, an enterohepatic drug. Scand J Gastroenterol Suppl 1994; 204: 1-15
  • 121 Lindor KD, Lacerda MA, Jorgensen RA. et al. Relationship between biliary and serum bile acids and response to ursodeoxycholic acid in patients with primary biliary cirrhosis. Am J Gastroenterol 1998; 93 (09) 1498-1504
  • 122 Amaral JD, Viana RJ, Ramalho RM, Steer CJ, Rodrigues CM. Bile acids: regulation of apoptosis by ursodeoxycholic acid. J Lipid Res 2009; 50 (09) 1721-1734
  • 123 Basiglio CL, Mottino AD, Roma MG. Tauroursodeoxycholate counteracts hepatocellular lysis induced by tensioactive bile salts by preventing plasma membrane-micelle transition. Chem Biol Interact 2010; 188 (03) 386-392
  • 124 Botla R, Spivey JR, Aguilar H, Bronk SF, Gores GJ. Ursodeoxycholate (UDCA) inhibits the mitochondrial membrane permeability transition induced by glycochenodeoxycholate: a mechanism of UDCA cytoprotection. J Pharmacol Exp Ther 1995; 272 (02) 930-938
  • 125 Rodrigues CM, Fan G, Wong PY, Kren BT, Steer CJ. Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol Med 1998; 4 (03) 165-178
  • 126 Rodrigues CM, Fan G, Ma X, Kren BT, Steer CJ. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest 1998; 101 (12) 2790-2799
  • 127 Colell A, Coll O, García-Ruiz C. et al. Tauroursodeoxycholic acid protects hepatocytes from ethanol-fed rats against tumor necrosis factor-induced cell death by replenishing mitochondrial glutathione. Hepatology 2001; 34 (05) 964-971
  • 128 Azzaroli F, Mehal W, Soroka CJ. et al. Ursodeoxycholic acid diminishes Fas-ligand-induced apoptosis in mouse hepatocytes. Hepatology 2002; 36 (01) 49-54
  • 129 Amaral JD, Castro RE, Solá S, Steer CJ, Rodrigues CM. p53 is a key molecular target of ursodeoxycholic acid in regulating apoptosis. J Biol Chem 2007; 282 (47) 34250-34259
  • 130 Xie Q, Khaoustov VI, Chung CC. et al. Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress-induced caspase-12 activation. Hepatology 2002; 36 (03) 592-601
  • 131 Ozcan U, Yilmaz E, Ozcan L. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006; 313 (5790): 1137-1140
  • 132 Schoemaker MH, Conde de la Rosa L, Buist-Homan M. et al. Tauroursodeoxycholic acid protects rat hepatocytes from bile acid-induced apoptosis via activation of survival pathways. Hepatology 2004; 39 (06) 1563-1573
  • 133 Im E, Akare S, Powell A, Martinez JD. Ursodeoxycholic acid can suppress deoxycholic acid-induced apoptosis by stimulating Akt/PKB-dependent survival signaling. Nutr Cancer 2005; 51 (01) 110-116
  • 134 Marzioni M, Francis H, Benedetti A. et al. Ca2+-dependent cytoprotective effects of ursodeoxycholic and tauroursodeoxycholic acid on the biliary epithelium in a rat model of cholestasis and loss of bile ducts. Am J Pathol 2006; 168 (02) 398-409
  • 135 Zollner G, Wagner M, Moustafa T. et al. Coordinated induction of bile acid detoxification and alternative elimination in mice: role of FXR-regulated organic solute transporter-alpha/beta in the adaptive response to bile acids. Am J Physiol Gastrointest Liver Physiol 2006; 290 (05) G923-G932
  • 136 Schuetz EG, Strom S, Yasuda K. et al. Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450. J Biol Chem 2001; 276 (42) 39411-39418
  • 137 Fickert P, Zollner G, Fuchsbichler A. et al. Effects of ursodeoxycholic and cholic acid feeding on hepatocellular transporter expression in mouse liver. Gastroenterology 2001; 121 (01) 170-183
  • 138 Zollner G, Fickert P, Fuchsbichler A. et al. Role of nuclear bile acid receptor, FXR, in adaptive ABC transporter regulation by cholic and ursodeoxycholic acid in mouse liver, kidney and intestine. J Hepatol 2003; 39 (04) 480-488
  • 139 Marschall HU, Wagner M, Zollner G. et al. Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans. Gastroenterology 2005; 129 (02) 476-485
  • 140 Beuers U, Maroni L, Elferink RO. The biliary HCO(3)(-) umbrella: experimental evidence revisited. Curr Opin Gastroenterol 2012; 28 (03) 253-257
  • 141 Prieto J, García N, Martí-Climent JM, Peñuelas I, Richter JA, Medina JF. Assessment of biliary bicarbonate secretion in humans by positron emission tomography. Gastroenterology 1999; 117 (01) 167-172
  • 142 Arenas F, Hervias I, Uriz M, Joplin R, Prieto J, Medina JF. Combination of ursodeoxycholic acid and glucocorticoids upregulates the AE2 alternate promoter in human liver cells. J Clin Invest 2008; 118 (02) 695-709
  • 143 Perez Barriocanal F, Marin JJ, Dumont M, Erlinger S. Influence of backward perfusion on ursodeoxycholate-induced choleresis in isolated in situ rat liver. J Hepatol 1990; 11 (02) 165-171
  • 144 Tanaka H, Makino I. Ursodeoxycholic acid-dependent activation of the glucocorticoid receptor. Biochem Biophys Res Commun 1992; 188 (02) 942-948
  • 145 Yoshikawa M, Tsujii T, Matsumura K. et al. Immunomodulatory effects of ursodeoxycholic acid on immune responses. Hepatology 1992; 16 (02) 358-364
  • 146 Lacaille F, Paradis K. The immunosuppressive effect of ursodeoxycholic acid: a comparative in vitro study on human peripheral blood mononuclear cells. Hepatology 1993; 18 (01) 165-172
  • 147 Miyaguchi S, Mori M. Ursodeoxycholic acid (UDCA) suppresses liver interleukin 2 mRNA in the cholangitis model. Hepatogastroenterology 2005; 52 (62) 596-602
  • 148 Yokomori H, Oda M, Wakabayashi G, Kitajima M, Ishii H. Ursodeoxycholic acid therapy attenuated expression of adhesion molecule in primary biliary cirrhosis. Intern Med 2003; 42 (12) 1259-1261
  • 149 Stiehl A. Ursodeoxycholic acid therapy in treatment of primary sclerosing cholangitis. Scand J Gastroenterol Suppl 1994; 204: 59-61
  • 150 Calmus Y, Weill B, Ozier Y, Chéreau C, Houssin D, Poupon R. Immunosuppressive properties of chenodeoxycholic and ursodeoxycholic acids in the mouse. Gastroenterology 1992; 103 (02) 617-621
  • 151 O'Brien CB, Shields DS, Saul SH, Reddy KR. Drug-induced vanishing bile duct syndrome: response to ursodiol. Am J Gastroenterol 1996; 91 (07) 1456-1457
  • 152 Moradpour D, Altorfer J, Flury R. et al. Chlorpromazine-induced vanishing bile duct syndrome leading to biliary cirrhosis. Hepatology 1994; 20 (06) 1437-1441
  • 153 Chlumská A, Curík R, Boudová L, Mukensnabl P, Klvana P. Chlorpromazine-induced cholestatic liver disease with ductopenia. Cesk Patol 2001; 37 (03) 118-122
  • 154 Taghian M, Tran TA, Bresson-Hadni S, Menget A, Felix S, Jacquemin E. Acute vanishing bile duct syndrome after ibuprofen therapy in a child. J Pediatr 2004; 145 (02) 273-276
  • 155 Hunt CM, Washington K. Tetracycline-induced bile duct paucity and prolonged cholestasis. Gastroenterology 1994; 107 (06) 1844-1847
  • 156 Smith LA, Ignacio JR, Winesett MP. et al. Vanishing bile duct syndrome: amoxicillin-clavulanic acid associated intra-hepatic cholestasis responsive to ursodeoxycholic acid. J Pediatr Gastroenterol Nutr 2005; 41 (04) 469-473
  • 157 Geubel AP, Rahier J. Drug-induced bile duct injury. In: Arroyo V, Bosch J, Bruguera M. et al, eds. Therapy in Liver Diseases: The Pathophysiological Basis of Therapy. Paris: Masson; 1997: 239-245
  • 158 Chawla A, Kahn E, Yunis EJ, Daum F. Rapidly progressive cholestasis: an unusual reaction to amoxicillin/clavulanic acid therapy in a child. J Pediatr 2000; 136 (01) 121-123
  • 159 Tanaka A, Gershwin ME. Finding the cure for primary biliary cholangitis - still waiting. Liver Int 2017; 37 (04) 500-502
  • 160 Juricic D, Hrstic I, Radic D. et al. Vanishing bile duct syndrome associated with azithromycin in a 62-year-old man. Basic Clin Pharmacol Toxicol 2010; 106 (01) 62-65
  • 161 Morelli MS, O'Brien FX. Stevens-Johnson syndrome and cholestatic hepatitis. Dig Dis Sci 2001; 46 (11) 2385-2388
  • 162 Srivastava M, Perez-Atayde A, Jonas MM. Drug-associated acute-onset vanishing bile duct and Stevens-Johnson syndromes in a child. Gastroenterology 1998; 115 (03) 743-746
  • 163 Garcia M, Mhanna MJ, Chung-Park MJ, Davis PH, Srivastava MD. Efficacy of early immunosuppressive therapy in a child with carbamazepine-associated vanishing bile duct and Stevens-Johnson syndromes. Dig Dis Sci 2002; 47 (01) 177-182
  • 164 Tajiri H, Etani Y, Mushiake S, Ozono K, Nakayama M. A favorable response to steroid therapy in a child with drug-associated acute vanishing bile duct syndrome and skin disorder. J Paediatr Child Health 2008; 44 (04) 234-236
  • 165 White JC, Appleman S. Infliximab/Plasmapheresis in vanishing bile duct syndrome secondary to toxic epidermal necrolysis. Pediatrics 2014; 134 (04) e1194-e1198
  • 166 Karnsakul W, Arkachaisri T, Atisook K, Wisuthsarewong W, Sattawatthamrong Y, Aanpreung P. Vanishing bile duct syndrome in a child with toxic epidermal necrolysis: an interplay of unbalanced immune regulatory mechanisms. Ann Hepatol 2006; 5 (02) 116-119
  • 167 Kim HY, Yang HK, Kim SH, Park JH. Ibuprofen associated acute vanishing bile duct syndrome and toxic epidermal necrolysis in an infant. Yonsei Med J 2014; 55 (03) 834-837
  • 168 Takeyama J, Saito T, Itagaki T, Abukawa D. Vanishing bile duct syndrome with a history of erythema multiforme. Pediatr Int 2006; 48 (06) 651-653
  • 169 Li H, Li X, Liao XX. et al. Drug associated vanishing bile duct syndrome combined with hemophagocytic lymphohistiocytosis. World J Gastrointest Endosc 2012; 4 (08) 376-378
  • 170 Jakab SS, West AB, Meighan DM, Brown Jr RS, Hale WB. Mycophenolate mofetil for drug-induced vanishing bile duct syndrome. World J Gastroenterol 2007; 13 (45) 6087-6089
  • 171 Okan G, Yaylaci S, Peker O, Kaymakoglu S, Saruc M. Vanishing bile duct and Stevens-Johnson syndrome associated with ciprofloxacin treated with tacrolimus. World J Gastroenterol 2008; 14 (29) 4697-4700
  • 172 Roskams TA, Theise ND, Balabaud C. et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology 2004; 39 (06) 1739-1745
  • 173 Gouw AS, Clouston AD, Theise ND. Ductular reactions in human liver: diversity at the interface. Hepatology 2011; 54 (05) 1853-1863
  • 174 Duncan AW, Dorrell C, Grompe M. Stem cells and liver regeneration. Gastroenterology 2009; 137 (02) 466-481
  • 175 Francis H, Glaser S, Demorrow S. et al. Small mouse cholangiocytes proliferate in response to H1 histamine receptor stimulation by activation of the IP3/CaMK I/CREB pathway. Am J Physiol Cell Physiol 2008; 295 (02) C499-C513
  • 176 Munshi MK, Priester S, Gaudio E. et al. Regulation of biliary proliferation by neuroendocrine factors: implications for the pathogenesis of cholestatic liver diseases. Am J Pathol 2011; 178 (02) 472-484
  • 177 Hall C, Sato K, Wu N. et al. Regulators of cholangiocyte proliferation. Gene Expr 2017; 17 (02) 155-171
  • 178 Alvaro D, Mancino MG, Onori P. et al. Estrogens and the pathophysiology of the biliary tree. World J Gastroenterol 2006; 12 (22) 3537-3545
  • 179 Alvaro D, Mancino MG, Glaser S. et al. Proliferating cholangiocytes: a neuroendocrine compartment in the diseased liver. Gastroenterology 2007; 132 (01) 415-431
  • 180 Yanger K, Zong Y, Maggs LR. et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev 2013; 27 (07) 719-724
  • 181 Michalopoulos GK, Barua L, Bowen WC. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology 2005; 41 (03) 535-544
  • 182 Sekiya S, Suzuki A. Hepatocytes, rather than cholangiocytes, can be the major source of primitive ductules in the chronically injured mouse liver. Am J Pathol 2014; 184 (05) 1468-1478
  • 183 Kamath B, Mack C. From hepatocyte to cholangiocyte: the remarkable potential of transdifferentiation to treat cholestatic diseases. Hepatology 2019; 69 (04) 1828-1830
  • 184 Schaub JR, Huppert KA, Kurial SNT. et al. De novo formation of the biliary system by TGFβ-mediated hepatocyte transdifferentiation. Nature 2018; 557 (7704): 247-251
  • 185 van Eyken P, Sciot R, Callea F, Desmet VJ. A cytokeratin-immunohistochemical study of focal nodular hyperplasia of the liver: further evidence that ductular metaplasia of hepatocytes contributes to ductular “proliferation”. Liver 1989; 9 (06) 372-377
  • 186 Tarlow BD, Pelz C, Naugler WE. et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 2014; 15 (05) 605-618
  • 187 Tanimizu N, Ichinohe N, Yamamoto M, Akiyama H, Nishikawa Y, Mitaka T. Progressive induction of hepatocyte progenitor cells in chronically injured liver. Sci Rep 2017; 7: 39990
  • 188 Vandersteenhoven AM, Burchette J, Michalopoulos G. Characterization of ductular hepatocytes in end-stage cirrhosis. Arch Pathol Lab Med 1990; 114 (04) 403-406
  • 189 Kamimoto K, Kaneko K, Kok CY, Okada H, Miyajima A, Itoh T. Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling. eLife 2016; 5: e15034
  • 190 Sone M, Nishikawa Y, Nagahama Y. et al. Recovery of mature hepatocytic phenotype following bile ductular transdifferentiation of rat hepatocytes in vitro. Am J Pathol 2012; 181 (06) 2094-2104
  • 191 Limaye PB, Bowen WC, Orr AV, Luo J, Tseng GC, Michalopoulos GK. Mechanisms of hepatocyte growth factor-mediated and epidermal growth factor-mediated signaling in transdifferentiation of rat hepatocytes to biliary epithelium. Hepatology 2008; 47 (05) 1702-1713
  • 192 Nishikawa Y, Doi Y, Watanabe H. et al. Transdifferentiation of mature rat hepatocytes into bile duct-like cells in vitro. Am J Pathol 2005; 166 (04) 1077-1088
  • 193 Jeliazkova P, Jörs S, Lee M. et al. Canonical Notch2 signaling determines biliary cell fates of embryonic hepatoblasts and adult hepatocytes independent of Hes1. Hepatology 2013; 57 (06) 2469-2479
  • 194 Fan B, Malato Y, Calvisi DF. et al. Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest 2012; 122 (08) 2911-2915
  • 195 Yimlamai D, Christodoulou C, Galli GG. et al. Hippo pathway activity influences liver cell fate. Cell 2014; 157 (06) 1324-1338
  • 196 O'Neill KE, Thowfeequ S, Li WC. et al. Hepatocyte-ductal transdifferentiation is mediated by reciprocal repression of SOX9 and C/EBPα. Cell Reprogram 2014; 16 (05) 314-323
  • 197 Doffou M, Adams G, Bowen WC. et al. Oct4 is crucial for transdifferentiation of hepatocytes to biliary epithelial cells in an in vitro organoid culture model. Gene Expr 2018; 18 (01) 51-62
  • 198 Penz-Österreicher M, Österreicher CH, Trauner M. Fibrosis in autoimmune and cholestatic liver disease. Best Pract Res Clin Gastroenterol 2011; 25 (02) 245-258
  • 199 Sirica AE, Nathanson MH, Gores GJ, Larusso NF. Pathobiology of biliary epithelia and cholangiocarcinoma: proceedings of the Henry M. and Lillian Stratton Basic Research Single-Topic Conference. Hepatology 2008; 48 (06) 2040-2046
  • 200 Strazzabosco M, Somlo S. Polycystic liver diseases: congenital disorders of cholangiocyte signaling. Gastroenterology 2011; 140 (07) 1855-1859 , 1859.e1