CC BY 4.0 · Rev Bras Ginecol Obstet 2021; 43(07): 545-559
DOI: 10.1055/s-0041-1730290
Review Article | Artigo de Revisão

Prenatal Ultrasound Diagnosis of Biometric changes in the Brain of Growth Restricted Fetuses. A Systematic Review of Literature

Diagnóstico ecográfico de alterações biométricas no cérebro de fetos com restrição do crescimento fetal. Uma revisão sistemática da literatura
1   Hospital Dr. Nélio Mendonça Funchal, Portugal
,
1   Hospital Dr. Nélio Mendonça Funchal, Portugal
› Institutsangaben

Abstract

Fetal growth restriction (FGR) occurs when the fetus does not reach its intrauterine potential for growth and development as a result of compromise in placental function. It is a condition that affects 5 to 10% of pregnancies and is the second most common cause of perinatal morbidity and mortality. Children born with FGR are at risk of impaired neurological and cognitive development and cardiovascular or endocrine diseases in adulthood. The purpose of the present revision is to perform a literature search for evidence on the detection and assessment by ultrasound of brain injury linked to FGR during fetal life. Using a systematic approach and quantitative evaluation as study methodology, we reviewed ultrasound studies of the fetal brain structure of growth-restricted fetuses with objective quality measures. A total of eight studies were identified. High quality studies were identified for measurement of brain volumes; corpus callosum; brain fissure depth measurements, and cavum septi pellucidi width measurement. A low-quality study was available for transverse cerebellar diameter measurement in FGR. Further prospective randomized studies are needed to understand the changes that occur in the brain of fetuses with restricted growth, as well as their correlation with the changes in cognitive development observed.

Resumo

A restrição do crescimento fetal (RCF) ocorre quando um feto não consegue atingir seu potencial de crescimento intrauterino, na maioria das vezes por compromisso da função placentária. É uma condição que afeta de 5 a 10% das gravidezes e é a segunda causa mais comum de morbidade e mortalidade perinatal. Crianças nascidas com RCF incorrem em maior risco de atraso no desenvolvimento neurológico e cognitivo, bem como de doenças cardiovasculares e/ou endócrinas, na idade adulta. O objetivo desta revisão foi o de pesquisar na literatura evidência sobre o diagnóstico pré-natal por ecografia de lesões cerebrais relacionadas com a RCF. Utilizando uma abordagem sistemática, avaliamos de forma quantitativa a metodologia dos oito estudos que preencheram os critérios de inclusão e foram, assim, incluídos nesta revisão. Foram identificados estudos de alta qualidade para a medição dos volumes cerebrais; medição do corpo caloso; medição da profundidade das incisuras cerebrais e medição do cavum do septo pelúcido. Os autores identificaram um estudo de qualidade inferior sobre a medição transversal do diâmetro transcerebelar em fetos com RCF. Mais estudos prospectivos randomizados são necessários para perceber quais as alterações que ocorrem no cerébro dos fetos com restrição do seu crescimento, bem como, a sua correlação com as alterações do desenvolvimento cognitivo observadas.



Publikationsverlauf

Eingereicht: 05. August 2020

Angenommen: 18. Februar 2021

Artikel online veröffentlicht:
30. August 2021

© 2021. Federação Brasileira de Ginecologia e Obstetrícia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Nardozza LM, Caetano AC, Zamarian AC. et al. Fetal growth restriction: current knowledge. Arch Gynecol Obstet 2017; 295 (05) 1061-1077
  • 2 Figueras F, Gratacós E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagn Ther 2014; 36 (02) 86-98
  • 3 Frøen JF, Gardosi JO, Thurmann A, Francis A, Stray-Pedersen B. Restricted fetal growth in sudden intrauterine unexplained death. Acta Obstet Gynecol Scand 2004; 83 (09) 801-807
  • 4 Barker DJ. Adult consequences of fetal growth restriction. Clin Obstet Gynecol 2006; 49 (02) 270-283
  • 5 McMillen IC, Adams MB, Ross JT. et al. Fetal growth restriction: adaptations and consequences. Reproduction 2001; 122 (02) 195-204
  • 6 Miller SL, Supramaniam VG, Jenkin G, Walker DW, Wallace EM. Cardiovascular responses to maternal betamethasone administration in the intrauterine growth-restricted ovine fetus. Am J Obstet Gynecol 2009; 201 (06) 613.e1-613.e8
  • 7 Malhotra A, Ditchfield M, Fahey MC. et al. Detection and assessment of brain injury in the growth-restricted fetus and neonate. Pediatr Res 2017; 82 (02) 184-193
  • 8 Murray E, Fernandes M, Fazel M, Kennedy SH, Villar J, Stein A. Differential effect of intrauterine growth restriction on childhood neurodevelopment: a systematic review. BJOG 2015; 122 (08) 1062-1072
  • 9 Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol 2016; 594 (04) 807-823
  • 10 Tolsa CB, Zimine S, Warfield SK. et al. Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction. Pediatr Res 2004; 56 (01) 132-138
  • 11 Dubois J, Benders M, Borradori-Tolsa C. et al. Primary cortical folding in the human newborn: an early marker of later functional development. Brain 2008; 131 (Pt 8): 2028-2041
  • 12 Latif HA, Gaafar HM, Moety GA, Mahmoud DS, El Rifai NM. Brain volume and Doppler velocimetry in growth-restricted, small-for-gestational-age, and appropriate-for-gestational-age fetuses. Am J Perinatol 2017; 34 (04) 333-339
  • 13 Benavides-Serralde A, Hernández-Andrade E, Fernández-Delgado J. et al. Three-dimensional sonographic calculation of the volume of intracranial structures in growth-restricted and appropriate-for-gestational age fetuses. Ultrasound Obstet Gynecol 2009; 33 (05) 530-537
  • 14 Caetano ACR, Zamarian ACP, Araujo Júnior E. et al. Assessment of intracranial structure volumes in fetuses with growth restriction by 3-dimensional sonography using the extended imaging virtual organ computer-aided analysis method. J Ultrasound Med 2015; 34 (08) 1397-1405
  • 15 Goldstein I, Tamir A, Reece AE, Weiner Z. Corpus callosum growth in normal and growth-restricted fetuses. Prenat Diagn 2011; 31 (12) 1115-1119
  • 16 Egaña-Ugrinovic G, Sanz-Cortes M, Figueras F, Bargalló N, Gratacós E. Differences in cortical development assessed by fetal MRI in late-onset intrauterine growth restriction. Am J Obstet Gynecol 2013; 209 (02) 126.e1-126.e8
  • 17 Husen SC, Koning IV, Go ATJI. et al. Three-dimensional ultrasound imaging of fetal brain fissures in the growth restricted fetus. PLoS One 2019; 14 (05) e0217538
  • 18 Jacob E, Braun J, Oelmeier K. et al. Fetal brain development in small-for-gestational age (SGA) fetuses and normal controls. J Perinat Med 2020; 48 (04) 389-394
  • 19 Snijders RJ, De Courcy-Wheeler RH, Nicolaides KH. Intrauterine growth retardation and fetal transverse cerebellar diameter. Prenat Diagn 1994; 14 (12) 1101-1105
  • 20 Ioannou C, Talbot K, Ohuma E. et al. Systematic review of methodology used in ultrasound studies aimed at creating charts of fetal size. BJOG 2012; 119 (12) 1425-1439
  • 21 Zacharia A, Zimine S, Lovblad KO. et al. Early assessment of brain maturation by MR imaging segmentation in neonates and premature infants. AJNR Am J Neuroradiol 2006; 27 (05) 972-977
  • 22 Gramsbergen A. Neural compensation after early lesions: a clinical view of animal experiments. Neurosci Biobehav Rev 2007; 31 (08) 1088-1094
  • 23 Hernandez-Andrade E, Figueroa-Diesel H, Jansson T, Rangel-Nava H, Gratacos E. Changes in regional fetal cerebral blood flow perfusion in relation to hemodynamic deterioration in severely growth-restricted fetuses. Ultrasound Obstet Gynecol 2008; 32 (01) 71-76
  • 24 Makhoul IR, Soudack M, Goldstein I, Smolkin T, Tamir A, Sujov P. Sonographic biometry of the frontal lobe in normal and growth-restricted neonates. Pediatr Res 2004; 55 (05) 877-883
  • 25 Anderson NG, Laurent I, Woodward LJ, Inder TE. Detection of impaired growth of the corpus callosum in premature infants. Pediatrics 2006; 118 (03) 951-960
  • 26 Sanz-Cortés M, Figueras F, Bonet-Carne E. et al. Fetal brain MRI texture analysis identifies different microstructural patterns in adequate and small for gestational age fetuses at term. Fetal Diagn Ther 2013; 33 (02) 122-129