J Am Acad Audiol 2021; 32(10): 646-653
DOI: 10.1055/s-0041-1730410
Review Article
Special Issue on Hearing Therapeutics and Protective Therapies

Genetic Medicine for Hearing Loss: OTOF as Exemplar

Ann E. Hickox*
1   Akouos Inc., Boston, Massachusetts
,
1   Akouos Inc., Boston, Massachusetts
,
James T. McLaughlin
1   Akouos Inc., Boston, Massachusetts
,
Gregory S. Robinson
1   Akouos Inc., Boston, Massachusetts
,
Jennifer A. Wellman
1   Akouos Inc., Boston, Massachusetts
,
Michael J. McKenna
1   Akouos Inc., Boston, Massachusetts
,
William F. Sewell
2   Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
,
Emmanuel J. Simons
1   Akouos Inc., Boston, Massachusetts
› Author Affiliations

Abstract

Millions of people worldwide have disabling hearing loss because one of their genes generates an incorrect version of some specific protein the ear requires for hearing. In many of these cases, delivering the correct version of the gene to a specific target cell within the inner ear has the potential to restore cochlear function to enable high-acuity physiologic hearing. Purpose: In this review, we outline our strategy for the development of genetic medicines with the potential to treat hearing loss. We will use the example of otoferlin gene (OTOF)-mediated hearing loss, a sensorineural hearing loss due to autosomal recessive mutations of the OTOF gene.

Disclaimer

Any mention of a product, service, or procedure in the Journal of the American Academy of Audiology does not constitute an endorsement of the product, service, or procedure by the American Academy of Audiology.


* Co-first authors.




Publication History

Received: 09 November 2020

Accepted: 19 January 2021

Article published online:
24 May 2022

© 2022. American Academy of Audiology. This article is published by Thieme.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Rodríguez-Ballesteros M, del Castillo FJ, Martín Y. et al. Auditory neuropathy in patients carrying mutations in the otoferlin gene (OTOF). Hum Mutat 2003; 22 (06) 451-456
  • 2 Yasunaga S, Grati M, Cohen-Salmon M. et al. A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nat Genet 1999; 21 (04) 363-369
  • 3 Yang T, Guo L, Wang L, Yu X. Diagnosis, intervention, and prevention of genetic hearing loss. Adv Exp Med Biol 2019; 1130: 73-92
  • 4 Shearer AE, Hildebrand MS, Smith RJH. Hereditary hearing loss and deafness overview. In: Adam MP, Ardinger HH, Pagon RA. et al. eds. GeneReviews® [Internet]. Seattle, WA: University of Washington, Seattle; 1999. , Feb 14 [updated July 27, 2017]: 1993-2020
  • 5 Koffler T, Ushakov K, Avraham KB. Genetics of hearing loss: syndromic. Otolaryngol Clin North Am 2015; 48 (06) 1041-1061
  • 6 Ma CC, Wang ZL, Xu T, He ZY, Wei YQ. The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnol Adv 2020; 40: 107502
  • 7 Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 2011; 12 (05) 341-355
  • 8 Wang D, Gao G. State-of-the-art human gene therapy: part I. Gene delivery technologies. Discov Med 2014; 18 (97) 67-77
  • 9 Messina S, Sframeli M. New treatments in spinal muscular atrophy: positive results and new challenges. J Clin Med 2020; 9 (07) 2222
  • 10 Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 2020; 21 (04) 255-272
  • 11 Fujioka M, Okano H, Ogawa K. Inflammatory and immune responses in the cochlea: potential therapeutic targets for sensorineural hearing loss. Front Pharmacol 2014; 5: 287
  • 12 Nyberg S, Abbott NJ, Shi X, Steyger PS, Dabdoub A. Delivery of therapeutics to the inner ear: the challenge of the blood-labyrinth barrier. Sci Transl Med 2019; 11 (482) eaao0935
  • 13 Hams N, Padmanarayana M, Qiu W, Johnson CP. Otoferlin is a multivalent calcium-sensitive scaffold linking SNAREs and calcium channels. Proc Natl Acad Sci U S A 2017; 114 (30) 8023-8028
  • 14 Pangršič T, Reisinger E, Moser T. Otoferlin: a multi-C2 domain protein essential for hearing. Trends Neurosci 2012; 35 (11) 671-680
  • 15 Azaiez H, Thorpe RK, Smith RJH. OTOF-related deafness. In: Adam MP, Ardinger HH, Pagon RA. et al., eds. GeneReviews® [Internet]. Seattle, WA: University of Washington, Seattle; ; February 29, 2008
  • 16 Raveh E, Buller N, Badrana O, Attias J. Auditory neuropathy: clinical characteristics and therapeutic approach. Am J Otolaryngol 2007; 28 (05) 302-308
  • 17 Moser T, Vogl C. New insights into cochlear sound encoding. F1000 Res 2016; 5: 1000 F1000 Faculty Rev-2081
  • 18 Pangršič T, Lasarow L, Reuter K. et al. Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells. Nat Neurosci 2010; 13 (07) 869-876
  • 19 Santarelli R, del Castillo I, Cama E, Scimemi P, Starr A. Audibility, speech perception and processing of temporal cues in ribbon synaptic disorders due to OTOF mutations. Hear Res 2015; 330 (Pt B): 200-212
  • 20 Wichmann C. Molecularly and structurally distinct synapses mediate reliable encoding and processing of auditory information. Hear Res 2015; 330 (Pt B): 178-190
  • 21 Buran BN, Strenzke N, Neef A, Gundelfinger ED, Moser T, Liberman MC. Onset coding is degraded in auditory nerve fibers from mutant mice lacking synaptic ribbons. J Neurosci 2010; 30 (22) 7587-7597
  • 22 Glowatzki E, Fuchs PA. Transmitter release at the hair cell ribbon synapse. Nat Neurosci 2002; 5 (02) 147-154
  • 23 Nouvian R, Beutner D, Parsons TD, Moser T. Structure and function of the hair cell ribbon synapse. J Membr Biol 2006; 209 (2–3): 153-165
  • 24 Johnson CP, Chapman ER. Otoferlin is a calcium sensor that directly regulates SNARE-mediated membrane fusion. J Cell Biol 2010; 191 (01) 187-197
  • 25 Roux I, Safieddine S, Nouvian R. et al. Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 2006; 127 (02) 277-289
  • 26 Takago H, Oshima-Takago T, Moser T. Disruption of otoferlin alters the mode of exocytosis at the mouse inner hair cell ribbon synapse. Front Mol Neurosci 2019; 11: 492
  • 27 Vogl C, Cooper BH, Neef J. et al. Unconventional molecular regulation of synaptic vesicle replenishment in cochlear inner hair cells. J Cell Sci 2015; 128 (04) 638-644
  • 28 Duncker SV, Franz C, Kuhn S. et al. Otoferlin couples to clathrin-mediated endocytosis in mature cochlear inner hair cells. J Neurosci 2013; 33 (22) 9508-9519
  • 29 Jung S, Maritzen T, Wichmann C. et al. Disruption of adaptor protein 2 μ (AP-2 μ) in cochlear hair cells impairs vesicle reloading of synaptic release sites and hearing. EMBO J 2015; 34 (21) 2686-2702
  • 30 Podsakoff G, Wong Jr KK, Chatterjee S. Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors. J Virol 1994; 68 (09) 5656-5666
  • 31 Domenger C, Grimm D. Next-generation AAV vectors-do not judge a virus (only) by its cover. Hum Mol Genet 2019; 28 (R1) R3-R14
  • 32 Zinn E, Pacouret S, Khaychuk V. et al. In silico reconstruction of the viral evolutionary lineage yields a potent gene therapy vector. Cell Rep 2015; 12 (06) 1056-1068
  • 33 Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 2019; 18 (05) 358-378
  • 34 Colella P, Ronzitti G, Mingozzi F. Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev 2018; 8: 87-104
  • 35 Gruntman AM, Flotte TR. The rapidly evolving state of gene therapy. FASEB J 2018; 32 (04) 1733-1740
  • 36 ClinicalTrials.gov. Accessed September 30, 2020 at: https://clinicaltrials.gov/ 2020
  • 37 Landegger LD, Pan B, Askew C. et al. A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nat Biotechnol 2017; 35 (03) 280-284
  • 38 Tao Y, Huang M, Shu Y. et al. Delivery of adeno-associated virus vectors in adult mammalian inner-ear cell subtypes without auditory dysfunction. Hum Gene Ther 2018; 29 (04) 492-506
  • 39 Yoshimura H, Shibata SB, Ranum PT, Smith RJH. Enhanced viral-mediated cochlear gene delivery in adult mice by combining canal fenestration with round window membrane inoculation. Sci Rep 2018; 8 (01) 2980
  • 40 Andres-Mateos E, Landegger LD, Unzu C. et al. Optimized surgical approach leads to highly efficient AAV gene transfer to inner hair cells in rhesus macaque. Paper presented at: American Society of Gene and Cell Therapy, 22nd Annual Meeting, Washington, D.C.; April 29–May 2, 2019
  • 41 Francis SP, McKenna MJ, Gao Y. et al. The adeno-associated viral Anc80 vector efficiently transduces inner ear cells in cynomolgus macaques (Macaca fascicularis). Abstr Midwinter Res Meet Assoc Res Otolaryngol 2020; 43: 685
  • 42 Gao Y, Francis SP, McKenna MJ. et al. The adeno-associated viral AAVAnc80 vector efficiently transduces inner ear cells in olive baboons (Papio anubis). Abstr Midwinter Res Meet Assoc Res Otolaryngol 2020; 43: 680
  • 43 McClements ME, MacLaren RE. Adeno-associated virus (AAV) dual vector strategies for gene therapy encoding large transgenes. Yale J Biol Med 2017; 90 (04) 611-623
  • 44 Akil O, Dyka F, Calvet C. et al. Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model. Proc Natl Acad Sci U S A 2019; 116 (10) 4496-4501
  • 45 Al-Moyed H, Cepeda AP, Jung S, Moser T, Kügler S, Reisinger E. A dual-AAV approach restores fast exocytosis and partially rescues auditory function in deaf otoferlin knock-out mice. EMBO Mol Med 2019; 11 (01) 11
  • 46 Reisinger E. Dual-AAV delivery of large gene sequences to the inner ear. Hear Res 2020; 394: 107857
  • 47 Plontke SK, Salt AN. Local drug delivery to the inner ear: Principles, practice, and future challenges. Hear Res 2018; 368: 1-2
  • 48 FDA. Human gene therapy for rare disease: guidance for industry. 2020 . Accessed February 16, 2021 at: https://www.fda.gov/media/113807/download
  • 49 High KA, Roncarolo MG. Gene therapy. N Engl J Med 2019; 381 (05) 455-464
  • 50 Wright JF, Wellman J, High KA. Manufacturing and regulatory strategies for clinical AAV2-hRPE65. Curr Gene Ther 2010; 10 (05) 341-349
  • 51 Maguire AM, Russell S, Wellman JA. et al. Efficacy, safety, and durability of voretigene neparvovec-rzyl in RPE65 mutation-associated inherited retinal dystrophy: results of phase 1 and 3 trials. Ophthalmology 2019; 126 (09) 1273-1285
  • 52 Lowes LP, Alfano LN, Arnold WD. et al. Impact of age and motor function in a phase 1/2A study of infants with SMA type 1 receiving single-dose gene replacement therapy. Pediatr Neurol 2019; 98: 39-45
  • 53 Sloan-Heggen CM, Bierer AO, Shearer AE. et al. Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum Genet 2016; 135 (04) 441-450
  • 54 Van Camp G, Smith RJH. Hereditary hearing loss homepage. Accessed November 2020 at: https://hereditaryhearingloss.org
  • 55 Lu VM, Ravindran K, Graffeo CS. et al. Efficacy and safety of bevacizumab for vestibular schwannoma in neurofibromatosis type 2: a systematic review and meta-analysis of treatment outcomes. J Neurooncol 2019; 144 (02) 239-248
  • 56 Joint Committee on Infant Hearing. Position statement: principles and guidelines for early hearing detection and intervention programs. J Early Hear Detect Interv 2019; 4 (02) 1-44