Semin Respir Crit Care Med 2021; 42(04): 616-622
DOI: 10.1055/s-0041-1730922
Review Article

Airway Clearance and Mucoactive Therapies

Gerard Muñoz Castro
1   Department of Pneumology, Dr. Josep Trueta University Hospital, Girona, Spain
2   Bronchiectasis Group, Girona Biomedical Research Institute, Girona, Spain
3   Department of Physical Therapy, EUSES & ENTI, University of Girona and University of Barcelona, Barcelona, Spain
,
Ana Balañá Corberó
4   Department of Pneumology, Hospital del Mar-Parc de Salut Mar, Barcelona, Spain
5   Myogenesis, Inflammation and Muscle Function—IMIM, Barcelona, Spain
6   Department of Physical Therapy, EUIFN Blanquerna URL Barcelona, Barcelona, Spain
› Author Affiliations

Abstract

The respiratory system is constantly exposed to external pathogens but has different and effective defense systems. The pathophysiology of bronchiectasis affects the defense system considerably in that alterations occur in the airway that reduce its effectiveness in mucociliary clearance and the greater presence of mucins leads to the accumulation of more adherent and viscous mucus. One of the pillars of treatment of this disease should be improvement of mucociliary clearance and a decrease in the adherence and viscosity of the mucus. To this end, the mobilization of secretions must be increased through effective respiratory physiotherapy techniques, which can be manual and/or instrumental. The properties of mucus can be modified to improve its mobilization through the use of a mucoactive agent. Despite the increase in the number and quality of studies, the evidence for these treatments remains scarce, although their application is recommended in all guidelines.



Publication History

Article published online:
14 July 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest 2002; 109 (05) 571-577
  • 2 Fahy JV, Dickey BF. Airway mucus function and dysfunction. N Engl J Med 2010; 363 (23) 2233-2247
  • 3 Wine JJ, Joo NS. Submucosal glands and airway defense. Proc Am Thorac Soc 2004; 1 (01) 47-53
  • 4 Hays SR, Fahy JV. Characterizing mucous cell remodeling in cystic fibrosis: relationship to neutrophils. Am J Respir Crit Care Med 2006; 174 (09) 1018-1024
  • 5 Reid L. Measurement of the bronchial mucous gland layer: a diagnostic yardstick in chronic bronchitis. Thorax 1960; 15: 132-141
  • 6 Tos M. Development of the tracheal glands in man. Number, density, structure, shape, and distribution of mucous glands elucidated by quantitative studies of whole mounts. Acta Pathol Microbiol Scand 1966; 68 (Suppl. 185) 3
  • 7 Zhou-Suckow Z, Duerr J, Hagner M, Agrawal R, Mall MA. Airway mucus, inflammation and remodeling: emerging links in the pathogenesis of chronic lung diseases. Cell Tissue Res 2017; 367 (03) 537-550
  • 8 Voynow JA, Rubin BK. Mucins, mucus, and sputum. Chest 2009; 135 (02) 505-512
  • 9 Button B, Cai LH, Ehre C. et al. A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 2012; 337 (6097): 937-941
  • 10 Herrero-Cortina B, Lee AL, O'Neill B. et al. Airway clearance techniques, pulmonary rehabilitation and physical activity. In: Chalmers JD, Polverino E, Aliberti S. eds. Bronchiectasis (ERS Monograph). Sheffield, European Respiratory Society; 2018: 331-352
  • 11 Lai SK, Wang YY, Wirtz D, Hanes J. Micro- and macrorheology of mucus. Adv Drug Deliv Rev 2009; 61 (02) 86-100
  • 12 Tesfaigzi Y. Regulation of mucous cell metaplasia in bronchial asthma. Curr Mol Med 2008; 8 (05) 408-415
  • 13 Chen Y, Zhao YH, Di YP, Wu R. Characterization of human mucin 5B gene expression in airway epithelium and the genomic clone of the amino-terminal and 5′-flanking region. Am J Respir Cell Mol Biol 2001; 25 (05) 542-553
  • 14 Nguyen LP, Omoluabi O, Parra S. et al. Chronic exposure to beta-blockers attenuates inflammation and mucin content in a murine asthma model. Am J Respir Cell Mol Biol 2008; 38 (03) 256-262
  • 15 Lazarowski ER, Boucher RC. Purinergic receptors in airway epithelia. Curr Opin Pharmacol 2009; 9 (03) 262-267
  • 16 Davis CW, Lazarowski E. Coupling of airway ciliary activity and mucin secretion to mechanical stresses by purinergic signaling. Respir Physiol Neurobiol 2008; 163 (1-3): 208-213
  • 17 Tarran R, Button B, Boucher RC. Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress. Annu Rev Physiol 2006; 68: 543-561
  • 18 Salathe M. Regulation of mammalian ciliary beating. Annu Rev Physiol 2007; 69: 401-422
  • 19 Sackner MA, Rosen MJ, Wanner A. Estimation of tracheal mucous velocity by bronchofiberscopy. J Appl Physiol 1973; 34 (04) 495-499
  • 20 Yeates DB, Aspin N, Levison H, Jones MT, Bryan AC. Mucociliary tracheal transport rates in man. J Appl Physiol 1975; 39 (03) 487-495
  • 21 Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ. Motile cilia of human airway epithelia are chemosensory. Science 2009; 325 (5944): 1131-1134
  • 22 Asmundsson T, Kilburn KH. Mucociliary clearance rates at various levels in dog lungs. Am Rev Respir Dis 1970; 102 (03) 388-397
  • 23 Foster WM, Langenback E, Bergofsky EH. Measurement of tracheal and bronchial mucus velocities in man: relation to lung clearance. J Appl Physiol 1980; 48 (06) 965-971
  • 24 Blake JR, Sleigh MA. Mechanics of ciliary locomotion. Biol Rev Camb Philos Soc 1974; 49 (01) 85-125
  • 25 Fulford GR, Blake JR. Muco-ciliary transport in the lung. J Theor Biol 1986; 121 (04) 381-402
  • 26 Matsui H, Grubb BR, Tarran R. et al. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 1998; 95 (07) 1005-1015
  • 27 Matsui H, Randell SH, Peretti SW, Davis CW, Boucher RC. Coordinated clearance of periciliary liquid and mucus from airway surfaces. J Clin Invest 1998; 102 (06) 1125-1131
  • 28 Rubin BK. Secretion properties, clearance, and therapy in airway disease. Transl Respir Med 2014; 2: 6
  • 29 Button B, Anderson WH, Boucher RC. Mucus hyperconcentration as a unifying aspect of the chronic bronchitic phenotype. Ann Am Thorac Soc 2016; 13 (Suppl. 02) S156-S162
  • 30 Rubin BK. The role of mucus in cough research. Lung 2010; 188 (Suppl. 01) S69-S72
  • 31 Chalmers JD, Moffitt KL, Suarez-Cuartin G. et al. Neutrophil elastase activity is associated with exacerbations and lung function decline in bronchiectasis. Am J Respir Crit Care Med 2017; 195 (10) 1384-1393
  • 32 Gramegna A, Amati F, Terranova L. et al. Neutrophil elastase in bronchiectasis. Respir Res 2017; 18 (01) 211
  • 33 Sibila O, Suarez-Cuartin G, Rodrigo-Troyano A. et al. Secreted mucins and airway bacterial colonization in non-CF bronchiectasis. Respirology 2015; 20 (07) 1082-1088
  • 34 Ramsey KA, Chen ACH, Radicioni G. et al. Airway mucus hyperconcentration in non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med 2020; 201 (06) 661-670
  • 35 Polverino E, Goeminne PC, McDonnell MJ. et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur Respir J 2017; 50 (03) 1700629
  • 36 O'Neill K, O'Donnell AE, Bradley JM. Airway clearance, mucoactive therapies and pulmonary rehabilitation in bronchiectasis. Respirology 2019; 24 (03) 227-237
  • 37 Phillips J, Lee A, Pope R, Hing W. Effect of airway clearance techniques in patients experiencing an acute exacerbation of bronchiectasis: a systematic review. Physiother Theory Pract 2020; 36 (12) 1300-1315
  • 38 Spinou A, Chalmers JD. Respiratory physiotherapy in the bronchiectasis guidelines: is there a loud voice we are yet to hear?. Eur Respir J 2019; 54 (03) 1901610
  • 39 Herrero Cortina B, Aliberti S, Blasi F. et al. Chest physiotherapy in European patients with bronchiectasis: data from the EMBARC registry. Eur Respir J 2017; 50 (Suppl. 61) PA4071
  • 40 Chang AB, Fortescue R, Grimwood K. et al. Task Force report: European Respiratory Society guidelines for the management of children and adolescents with bronchiectasis. Eur Respir J 2021;2002990. doi: 10.1183/13993003.02990-2020
  • 41 Kim CS, Iglesias AJ, Sackner MA. Mucus clearance by two-phase gas-liquid flow mechanism: asymmetric periodic flow model. J Appl Physiol (1985) 1987; 62 (03) 959-971
  • 42 Balañá Corberó A, Domínguez-Álvarez M, Barreiro E. Respiratory physiotherapy in Lady Windermere syndrome: the missing link?. Arch Bronconeumol 2020; 56 (10) 619-620
  • 43 Bohadana A, Izbicki G, Kraman SS. Fundamentals of lung auscultation. N Engl J Med 2014; 370 (08) 744-751
  • 44 Rohrer F. Flow resistance in human air passages and the effect of irregular branching of the bronchial system on the respiratory process in various regions of the lungs. Arch Ges Physiol 1915; 162: 225-299
  • 45 Herrero-Cortina B, Vilaró J, Martí D. et al. Short-term effects of three slow expiratory airway clearance techniques in patients with bronchiectasis: a randomised crossover trial. Physiotherapy 2016; 102 (04) 357-364
  • 46 Postiaux G, Lens E, Alsteens G. et al. Efficacité de l'expiration lente totale glotte ouverte en décubitus láteral (ELTGOL): sur la toilette en périphérie de l'arbre trachéobronchique. Ann Kinésithér 1990; 17: 87-99
  • 47 Muñoz G, de Gracia J, Buxó M, Alvarez A, Vendrell M. Long-term benefits of airway clearance in bronchiectasis: a randomised placebo-controlled trial. Eur Respir J 2018; 51 (01) 1701926
  • 48 Schöni MH. Autogenic drainage: a modern approach to physiotherapy in cystic fibrosis. J R Soc Med 1989; 82 (Suppl. 16) 32-37
  • 49 McCormack P, Burnham P, Southern KW. Autogenic drainage for airway clearance in cystic fibrosis. Cochrane Database Syst Rev 2017; 10 (10) CD009595
  • 50 Santos MD, Milross MA, McKenzie DK, Alison JA. Bubble-positive expiratory pressure device and sputum clearance in bronchiectasis: a randomised cross-over study. Physiother Res Int 2020; 25 (03) e1836
  • 51 Cecins NM, Jenkins SC, Pengelley J, Ryan G. The active cycle of breathing techniques--to tip or not to tip?. Respir Med 1999; 93 (09) 660-665
  • 52 McCallion P, De Soyza A. Cough and bronchiectasis. Pulm Pharmacol Ther 2017; 47: 77-83
  • 53 Hess DR. Airway clearance: physiology, pharmacology, techniques, and practice. Respir Care 2007; 52 (10) 1392-1396
  • 54 McCool FD. Global physiology and pathophysiology of cough: ACCP evidence-based clinical practice guidelines. Chest 2006; 129 (1, Suppl): 48S-53S
  • 55 Thompson BTH. Forced expiration exercises in asthma and their effect on FEV1. NZ J Physiothera 1968; 3: 19-21
  • 56 Pryor JA, Webber BA, Hodson ME, Batten JC. Evaluation of the forced expiration technique as an adjunct to postural drainage in treatment of cystic fibrosis. BMJ 1979; 2 (6187): 417-418
  • 57 Mead J, Turner JM, Macklem PT, Little JB. Significance of the relationship between lung recoil and maximum expiratory flow. J Appl Physiol 1967; 22 (01) 95-108
  • 58 Paneroni M, Clini E, Simonelli C, Bianchi L, Degli Antoni F, Vitacca M. Safety and efficacy of short-term intrapulmonary percussive ventilation in patients with bronchiectasis. Respir Care 2011; 56 (07) 984-988
  • 59 Nicolini A, Grecchi B, Banfi P. Effectiveness of two high frequency chest wall oscillation techniques in patients with bronchiectasis: a randomized controlled preliminary study. Panminerva Med 2020
  • 60 Lee AL, Burge AT, Holland AE. Positive expiratory pressure therapy versus other airway clearance techniques for bronchiectasis. Cochrane Database Syst Rev 2017; 9 (09) CD011699
  • 61 Lee AL, Burge AT, Holland AE. Airway clearance techniques for bronchiectasis. Cochrane Database Syst Rev 2015; 2015 (11) CD008351
  • 62 Hill AT, Sullivan AL, Chalmers JD. et al. The BTS guideline for bronchiectasis in adults. Thorax 2019; 74: 1-69
  • 63 Martínez-García MÁ, Máiz L, Olveira C. et al. Spanish guidelines on treatment of bronchiectasis in adults [in Spanish]. Arch Bronconeumol 2018; 54 (02) 88-98
  • 64 Chalmers JD, Crichton M, Goeminne PC. et al. The European Multicentre Bronchiectasis Audit and Research Collaboration (EMBARC): experiences from a successful ERS Clinical Research Collaboration. Breathe (Sheff) 2017; 13 (03) 180-192
  • 65 Balsamo R, Lanata L, Egan CG. Mucoactive drugs. Eur Respir Rev 2010; 19 (116) 127-133
  • 66 Cotgreave IA, Eklund A, Larsson K, Moldéus PW. No penetration of orally administered N-acetylcysteine into bronchoalveolar lavage fluid. Eur J Respir Dis 1987; 70 (02) 73-77
  • 67 Rogers DF. Mucoactive agents for airway mucus hypersecretory diseases. Respir Care 2007; 52 (09) 1176-1193
  • 68 Zafarullah M, Li WQ, Sylvester J, Ahmad M. Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 2003; 60 (01) 6-20
  • 69 Tomkiewicz RP, App EM, De Sanctis GT. et al. A comparison of a new mucolytic N-acetylcysteine L-lysinate with N-acetylcysteine: airway epithelial function and mucus changes in dog. Pulm Pharmacol 1995; 8 (06) 259-265
  • 70 Hart A, Sugumar K, Milan SJ, Fowler SJ, Crossingham I. Inhaled hyperosmolar agents for bronchiectasis. Cochrane Database Syst Rev 2014; (05) CD002996
  • 71 Wilkinson M, Sugumar K, Milan SJ, Hart A, Crockett A, Crossingham I. Mucolytics for bronchiectasis. Cochrane Database Syst Rev 2014; (05) CD001289
  • 72 Hart A, Sugumar K, Milan SJ, Fowler SJ, Crossingham I. Inhaled hyperosmolar agents for bronchiectasis. Cochrane Database Syst Rev 2014; (05) CD002996
  • 73 Olivieri D, Ciaccia A, Marangio E, Marsico S, Todisco T, Del Vita M. Role of bromhexine in exacerbations of bronchiectasis: double-blind randomized multicenter study versus placebo. Respiration 1991; 58 (3-4): 117-121
  • 74 Crisafulli E, Coletti O, Costi S. et al. Effectiveness of erdosteine in elderly patients with bronchiectasis and hypersecretion: a 15-day, prospective, parallel, open-label, pilot study. Clin Ther 2007; 29 (09) 2001-2009
  • 75 Bilton D, Daviskas E, Anderson SD. et al; B301 Investigators. Phase 3 randomized study of the efficacy and safety of inhaled dry powder mannitol for the symptomatic treatment of non-cystic fibrosis bronchiectasis. Chest 2013; 144 (01) 215-225
  • 76 O'Donnell AE, Barker AF, Ilowite JS, Fick RB. Treatment of idiopathic bronchiectasis with aerosolized recombinant human DNase I. rhDNase Study Group. Chest 1998; 113 (05) 1329-1334
  • 77 Pasteur MC, Bilton D, Hill AT. British Thoracic Society Bronchiectasis non-CF Guideline Group. British Thoracic Society guideline for non-CF bronchiectasis. Thorax 2010; 65 (Suppl. 01) i1-i58
  • 78 Vendrell M, de Gracia J, Olveira C. et al. Diagnóstico y tratamiento de las bronquiectasias. SEPAR. [Diagnosis and treatment of bronchiectasis. Spanish Society of Pneumology and Thoracic Surgery] Arch Bronconeumol 2008; 44 (11) 629-640
  • 79 Donaldson SH, Bennett WD, Zeman KL, Knowles MR, Tarran R, Boucher RC. Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N Engl J Med 2006; 354 (03) 241-250
  • 80 Elkins MR, Robinson M, Rose BR. et al; National Hypertonic Saline in Cystic Fibrosis (NHSCF) Study Group. A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med 2006; 354 (03) 229-240
  • 81 Kellett F, Robert NM. Nebulised 7% hypertonic saline improves lung function and quality of life in bronchiectasis. Respir Med 2011; 105 (12) 1831-1835
  • 82 Nicolson CH, Stirling RG, Borg BM, Button BM, Wilson JW, Holland AE. The long term effect of inhaled hypertonic saline 6% in non-cystic fibrosis bronchiectasis. Respir Med 2012; 106 (05) 661-667
  • 83 Paff T, Daniels JM, Weersink EJ, Lutter R, Vonk Noordegraaf A, Haarman EG. A randomised controlled trial on the effect of inhaled hypertonic saline on quality of life in primary ciliary dyskinesia. Eur Respir J 2017; 49 (02) 1601770
  • 84 Herrero-Cortina B, Alcaraz V, Vilaró J, Torres A, Polverino E. Impact of hypertonic saline solutions on sputum expectoration and their safety profile in patients with bronchiectasis: a randomized crossover trial. J Aerosol Med Pulm Drug Deliv 2018; 31 (05) 281-289
  • 85 ISRCTN Registry. A 2 × 2 factorial randomised open label trial to determine the clinical and cost-effectiveness of hypertonic saline (HTS 6%) and carbocisteine for airway clearance versus usual care over 52 weeks in bronchiectasis. 2018. Accessed May 17, 2021 at: https://doi.org/10.1186/ISRCTN89040295
  • 86 Australian New Zealand Clinical Trials Registry, ACTRN12611001199909. The effect of azithromycin and hypertonic saline on quality of life, lung function and exercise capacity in adults with non-cystic fibrosis bronchiectasis. 2012. Accessed May 17, 2021 at: https://anzctr.org.au/Trial/Registration/TrialReview.aspx?id=347657&isReview=true