Semin Musculoskelet Radiol 2021; 25(03): 381-387
DOI: 10.1055/s-0041-1731059
Review Article

3D MRI: Technical Considerations and Practical Integration

1   Clinica di Radiologia EOC, Istituto di Imaging della Svizzera Italiana (IIMSI), Lugano, Svizzera
,
Natalie Hinterholzer
2   SCMI, Swiss Center for Musculoskeletal Imaging, Balgrist Campus AG, Zürich, Switzerland
,
Daniel Nanz
2   SCMI, Swiss Center for Musculoskeletal Imaging, Balgrist Campus AG, Zürich, Switzerland
3   University of Zürich, Zürich, Switzerland
› Author Affiliations

Abstract

One of the main advantages of three-dimensional (3D) magnetic resonance imaging (MRI) is the possibility of isotropic voxels and reconstructed planar cuts through the volumetric data set in any orientation with multiplanar reformation software through real-time evaluation. For example, reformats by the radiologist during reporting allows exploitation of the full potential of isotropic 3D volumetric acquisition or through standardized retrospective reformats of thicker predefined slices of an isotropic volumetric data set by technologists. The main challenges for integrating 3D fast spin echo (FSE) and turbo spin-echo (TSE) MRI in clinical practice are a long acquisition time and some artifacts, whereas for integrating 3D gradient-recalled echo protocols, the main challenges are lower signal-to-noise ratios (SNRs) and the inability to produce intermediate, and T2-weighted contrast. The implementation of bidirectional parallel imaging acquisition and random undersampling acceleration strategies of 3D TSE pulse sequences substantially shortens the examination time with only minor SNR reductions. This article provides an overview of general technical considerations of 3D FSE and TSE sequences in musculoskeletal MRI. It also describes how these sequences achieve efficient data acquisition and reviews the main advantages and challenges for their introduction to clinical practice.

Financial Disclosure

Filippo Del Grande reports personal fees from speaking honorariums at Siemens and Bayer AG, and nonfinancial and other support from institutional reference center and research support at Siemens, outside the submitted work. Balgrist Campus AG, the employer of Natalie Hinterholzer and Daniel Nanz, has a master research agreement with Siemens Healthcare.




Publication History

Article published online:
21 September 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Elster AD. Gradient-echo MR imaging: techniques and acronyms. Radiology 1993; 186 (01) 1-8
  • 2 Nitz WR. Magnetresonanztomographie. Radiologe 2003; 43: 745-766
  • 3 Hahn EL. Spin echoes. Phys Rev 1950; 80: 580-594
  • 4 Melki PS, Mulkern RV, Panych LP, Jolesz FA. Comparing the FAISE method with conventional dual-echo sequences. J Magn Reson Imaging 1991; 1 (03) 319-326
  • 5 Naraghi A, White LM. Three-dimensional MRI of the musculoskeletal system. AJR Am J Roentgenol 2012; 199 (03) W283–W93
  • 6 Jung BA, Weigel M. Spin echo magnetic resonance imaging. J Magn Reson Imaging 2013; 37 (04) 805-817
  • 7 Feinberg DA, Mills CM, Posin JP. et al. Multiple spin-echo magnetic resonance imaging. Radiology 1985; 155 (02) 437-442
  • 8 Hennig J, Nauerth A, Friedburg H, Ratzel D. New rapid imaging procedure for nuclear spin tomography. [in German]. Radiologe 1984; 24 (12) 579-580
  • 9 Hennig J, Nauerth A, Friedburg H. RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 1986; 3 (06) 823-833
  • 10 Glaser C, D'Anastasi M, Theisen D. et al. Understanding 3D TSE sequences: advantages, disadvantages, and application in MSK imaging. Semin Musculoskelet Radiol 2015; 19 (04) 321-327
  • 11 Hennig J. Multiecho imaging sequences with low refocusing flip angles. J Magn Reson 1969; 1988 (78) 397-407
  • 12 Hennig J, Weigel M, Scheffler K. Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 2003; 49 (03) 527-535
  • 13 Busse RF, Brau AC, Vu A. et al. Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med 2008; 60 (03) 640-649
  • 14 Busse RF, Hariharan H, Vu A, Brittain JH. Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med 2006; 55 (05) 1030-1037
  • 15 Weigel M, Hennig J. Contrast behavior and relaxation effects of conventional and hyperecho-turbo spin echo sequences at 1.5 and 3 T. Magn Reson Med 2006; 55 (04) 826-835
  • 16 Le Roux P. Non-CPMG fast spin echo with full signal. J Magn Reson 2002; 155 (02) 278-292
  • 17 Hennig J, Scheffler K. Hyperechoes. Magn Reson Med 2001; 46 (01) 6-12
  • 18 Bapst B, Amegnizin J-L, Vignaud A. et al. Post-contrast 3D T1-weighted TSE MR sequences (SPACE, CUBE, VISTA/BRAINVIEW, isoFSE, 3D MVOX): Technical aspects and clinical applications. J Neuroradiol 2020; 47 (05) 358-368
  • 19 Melhem ER, Itoh R, Folkers PJ. Cervical spine: three-dimensional fast spin-echo MR imaging—improved recovery of longitudinal magnetization with driven equilibrium pulse. Radiology 2001; 218 (01) 283-288
  • 20 Becker ED, Farrar TC, Farrar TC. Driven equilibrium Fourier transform spectroscopy. A new method for nuclear magnetic resonance signal enhancement. J Am Chem Soc 1969; 91 (27) 7784-7785
  • 21 van Uijen CM, den Boef JH. Driven-equilibrium radiofrequency pulses in NMR imaging. Magn Reson Med 1984; 1 (04) 502-507
  • 22 Shakoor D, Guermazi A, Kijowski R. et al. Cruciate ligament injuries of the knee: a meta-analysis of the diagnostic performance of 3D MRI. J Magn Reson Imaging 2019; 50 (05) 1545-1560
  • 23 Shakoor D, Kijowski R, Guermazi A. et al. Diagnosis of knee meniscal injuries by using three-dimensional MRI: a systematic review and meta-analysis of diagnostic performance. Radiology 2019; 290 (02) 435-445
  • 24 Shakoor D, Guermazi A, Kijowski R. et al. Diagnostic performance of three-dimensional MRI for depicting cartilage defects in the knee: a meta-analysis. Radiology 2018; 289 (01) 71-82
  • 25 Markl M, Leupold J. Gradient echo imaging. J Magn Reson Imaging 2012; 35 (06) 1274-1289
  • 26 Winkler ML, Ortendahl DA, Mills TC. et al. Characteristics of partial flip angle and gradient reversal MR imaging. Radiology 1988; 166 (1 Pt 1): 17-26
  • 27 Fritz J, Fritz B, Thawait GG, Meyer H, Gilson WD, Raithel E. Three-dimensional CAIPIRINHA SPACE TSE for 5-minute high-resolution MRI of the knee. Invest Radiol 2016; 51 (10) 609-617
  • 28 Jo S, Sammet S, Thomas S, Stacy GS. Musculoskeletal MRI pulse sequences: a review for residents and fellows. Radiographics 2019; 39 (07) 2038-2039
  • 29 Bieri O, Scheffler K. Fundamentals of balanced steady state free precession MRI. J Magn Reson Imaging 2013; 38 (01) 2-11
  • 30 Zur Y, Wood ML, Neuringer LJ. Spoiling of transverse magnetization in steady-state sequences. Magn Reson Med 1991; 21 (02) 251-263
  • 31 Epstein FH, Mugler III JP, Brookeman JR. Spoiling of transverse magnetization in gradient-echo (GRE) imaging during the approach to steady state. Magn Reson Med 1996; 35 (02) 237-245
  • 32 Recht MP, Piraino DW, Paletta GA, Schils JP, Belhobek GH. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology 1996; 198 (01) 209-212
  • 33 Del Grande F, Delcogliano M, Guglielmi R. et al. Fully automated 10-minute 3D CAIPIRINHA SPACE TSE MRI of the knee in adults: a multicenter, multireader, multifield-strength validation study. Invest Radiol 2018; 53 (11) 689-697
  • 34 Del Grande F, Rashidi A, Luna R. et al. Five-minute five-sequence knee MRI using combined simultaneous multislice and parallel imaging acceleration: comparison with 10-minute parallel imaging knee MRI. Radiology 2021; 203655: 203655
  • 35 Fritz J, Guggenberger R, Del Grande F. Rapid musculoskeletal MRI in 2021: clinical application of advanced accelerated techniques. AJR Am J Roentgenol 2021; 216 (03) 718-733
  • 36 Del Grande F, Guggenberger R, Fritz J. Rapid musculoskeletal MRI in 2021: value and optimized use of widely accessible techniques. AJR Am J Roentgenol 2021; 216 (03) 704-717
  • 37 Fritz J, Fritz B, Zhang J. et al. Simultaneous multislice accelerated turbo spin echo magnetic resonance imaging: comparison and combination with in-plane parallel imaging acceleration for high-resolution magnetic resonance imaging of the knee. Invest Radiol 2017; 52 (09) 529-537
  • 38 Notohamiprodjo M, Horng A, Pietschmann MF. et al. MRI of the knee at 3T: first clinical results with an isotropic PDfs-weighted 3D-TSE-sequence. Invest Radiol 2009; 44 (09) 585-597
  • 39 Breuer FA, Blaimer M, Mueller MF. et al. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med 2006; 55 (03) 549-556
  • 40 Fritz B, Bensler S, Thawait GK, Raithel E, Stern SE, Fritz J. CAIPIRINHA-accelerated 10-min 3D TSE MRI of the ankle for the diagnosis of painful ankle conditions: performance evaluation in 70 patients. Eur Radiol 2019; 29 (02) 609-619
  • 41 Fritz J, Ahlawat S, Fritz B. et al. 10-Min 3D turbo spin echo MRI of the knee in children: arthroscopy-validated accuracy for the diagnosis of internal derangement. J Magn Reson Imaging 2019; 49 (07) e139-e151
  • 42 Kalia V, Fritz B, Johnson R, Gilson WD, Raithel E, Fritz J. CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons. Eur Radiol 2017; 27 (09) 3652-3661
  • 43 Fritz J, Raithel E, Thawait GK, Gilson W, Papp DF. Six-fold acceleration of high-spatial resolution 3D SPACE MRI of the knee through incoherent k-space undersampling and iterative reconstruction—first experience. Invest Radiol 2016; 51 (06) 400-409
  • 44 Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58 (06) 1182-1195
  • 45 Fritz J, Ahlawat S. High-resolution three-dimensional and cinematic rendering MR neurography. Radiology 2018; 288 (01) 25