Semin Musculoskelet Radiol 2021; 25(03): 514-526
DOI: 10.1055/s-0041-1731332
Review Article

3D MRI of the Ankle: A Concise State-of-the-Art Review

1   Department of Radiology, University Hospital Balgrist, Zurich, Switzerland
2   Faculty of Medicine, University of Zurich, Zurich, Switzerland
,
3   New York University Grossman School of Medicine, New York University, New York, New York
,
1   Department of Radiology, University Hospital Balgrist, Zurich, Switzerland
2   Faculty of Medicine, University of Zurich, Zurich, Switzerland
› Institutsangaben
Financial Disclosure Jan Fritz received institutional research support from Siemens AG, BTG International, Zimmer Biomed, DePuy Synthes, QED, and SyntheticMR. He is a scientific advisor for Siemens AG, SyntheticMR, GE Healthcare, QED, BTG, ImageBiopsy Laboratory, Boston Scientific, and Mirata Pharma, and has shared patents with Siemens Healthcare and Johns Hopkins University.

Abstract

Magnetic resonance imaging (MRI) is a powerful imaging modality for visualizing a wide range of ankle disorders that affect ligaments, tendons, and articular cartilage. Standard two-dimensional (2D) fast spin-echo (FSE) and turbo spin-echo (TSE) pulse sequences offer high signal-to-noise and contrast-to-noise ratios, but slice thickness limitations create partial volume effects. Modern three-dimensional (3D) FSE/TSE pulse sequences with isotropic voxel dimensions can achieve higher spatial resolution and similar contrast resolutions in ≤ 5 minutes of acquisition time. Advanced acceleration schemes have reduced the blurring effects of 3D FSE/TSE pulse sequences by affording shorter echo train lengths. The ability for thin-slice partitions and multiplanar reformation capabilities eliminate relevant partial volume effects and render modern 3D FSE/TSE pulse sequences excellently suited for MRI visualization of several oblique and curved structures around the ankle. Clinical efficiency gains can be achieved by replacing two or three 2D FSE/TSE sequences within an ankle protocol with a single isotropic 3D FSE/TSE pulse sequence. In this article, we review technical pulse sequence properties for 3D MRI of the ankle, discuss practical considerations for clinical implementation and achieving the highest image quality, compare diagnostic performance metrics of 2D and 3D MRI for major ankle structures, and illustrate a broad spectrum of ankle abnormalities.



Publikationsverlauf

Artikel online veröffentlicht:
21. September 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Fong DT, Hong Y, Chan LK, Yung PS, Chan KM. A systematic review on ankle injury and ankle sprain in sports. Sports Med 2007; 37 (01) 73-94
  • 2 Fritz B, Parkar AP, Cerezal L. et al. Sports imaging of team handball injuries. Semin Musculoskelet Radiol 2020; 24 (03) 227-245
  • 3 Wilder RP, Sethi S. Overuse injuries: tendinopathies, stress fractures, compartment syndrome, and shin splints. Clin Sports Med 2004; 23 (01) 55-81 , vi .
  • 4 Mugler III JP. Optimized three-dimensional fast-spin-echo MRI. J Magn Reson Imaging 2014; 39 (04) 745-767
  • 5 Kalia V, Fritz B, Johnson R, Gilson WD, Raithel E, Fritz J. CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons. Eur Radiol 2017; 27 (09) 3652-3661
  • 6 Fritz B, Bensler S, Thawait GK, Raithel E, Stern SE, Fritz J. CAIPIRINHA-accelerated 10-min 3D TSE MRI of the ankle for the diagnosis of painful ankle conditions: performance evaluation in 70 patients. Eur Radiol 2019; 29 (02) 609-619
  • 7 Fritz J, Fritz B, Thawait GG, Meyer H, Gilson WD, Raithel E. Three-dimensional CAIPIRINHA SPACE TSE for 5-minute high-resolution MRI of the knee. Invest Radiol 2016; 51 (10) 609-617
  • 8 Stevens KJ, Busse RF, Han E. et al. Ankle: isotropic MR imaging with 3D-FSE-cube—initial experience in healthy volunteers. Radiology 2008; 249 (03) 1026-1033
  • 9 Notohamiprodjo M, Kuschel B, Horng A. et al. 3D-MRI of the ankle with optimized 3D-SPACE. Invest Radiol 2012; 47 (04) 231-239
  • 10 Park HJ, Lee SY, Park NH. et al. Three-dimensional isotropic T2-weighted fast spin-echo (VISTA) ankle MRI versus two-dimensional fast spin-echo T2-weighted sequences for the evaluation of anterior talofibular ligament injury. Clin Radiol 2016; 71 (04) 349-355
  • 11 Yi J, Lee YH, Hahn S, Albakheet SS, Song HT, Suh JS. Fast isotropic volumetric magnetic resonance imaging of the ankle: acceleration of the three-dimensional fast spin echo sequence using compressed sensing combined with parallel imaging. Eur J Radiol 2019; 112: 52-58
  • 12 Fritz J, Fritz B, Zhang J. et al. Simultaneous multislice accelerated turbo spin echo magnetic resonance imaging: comparison and combination with in-plane parallel imaging acceleration for high-resolution magnetic resonance imaging of the knee. Invest Radiol 2017; 52 (09) 529-537
  • 13 Del Grande F, Rashidi A, Luna R. et al. Five-minute five-sequence knee MRI using combined simultaneous multislice and parallel imaging acceleration: comparison with 10-minute parallel imaging knee MRI. Radiology 2021; 299 (03) 635-646
  • 14 Fritz J, Guggenberger R, Del Grande F. Rapid musculoskeletal MRI in 2021: clinical application of advanced accelerated techniques. AJR Am J Roentgenol 2021; 216 (03) 718-733
  • 15 Del Grande F, Guggenberger R, Fritz J. Rapid musculoskeletal MRI in 2021: value and optimized use of widely accessible techniques. AJR Am J Roentgenol 2021; 216 (03) 704-717
  • 16 Kim HS, Yoon YC, Kwon JW, Choe BK. Qualitative and quantitative assessment of isotropic ankle magnetic resonance imaging: three-dimensional isotropic intermediate-weighted turbo spin echo versus three-dimensional isotropic fast field echo sequences. Korean J Radiol 2012; 13 (04) 443-449
  • 17 Del Grande F, Delcogliano M, Guglielmi R. et al. Fully automated 10-minute 3D CAIPIRINHA SPACE TSE MRI of the knee in adults: a multicenter, multireader, multifield-strength validation study. Invest Radiol 2018; 53 (11) 689-697
  • 18 Fritz J, Ahlawat S, Fritz B. et al. 10-Min 3D turbo spin echo MRI of the knee in children: arthroscopy-validated accuracy for the diagnosis of internal derangement. J Magn Reson Imaging 2019; 49 (07) e139-e151
  • 19 Kumar B, Kumar S, Fritz J. eds. Whole-volume, high-resolution, in-vivo signal-to-noise ratio and G-factor superiority, and structural similarity index differences, of compressed sensing SPACE and CAIPIRINHA SPACE over GRAPPA SPACE. Paper presented at: Joint Annual Meeting of the International Society for Magnetic Resonance in Medicine and the European Society for Magnetic Resonance in Medicine and Biology (ISMRM-ESMRMB). ; June 16–21, 2018 Paris, France:
  • 20 Hølmer P, Søndergaard L, Konradsen L, Nielsen PT, Jørgensen LN. Epidemiology of sprains in the lateral ankle and foot. Foot Ankle Int 1994; 15 (02) 72-74
  • 21 Perrich KD, Goodwin DW, Hecht PJ, Cheung Y. Ankle ligaments on MRI: appearance of normal and injured ligaments. AJR Am J Roentgenol 2009; 193 (03) 687-695
  • 22 Yi J, Cha JG, Lee YK, Lee BR, Jeon CH. MRI of the anterior talofibular ligament, talar cartilage and os subfibulare: comparison of isotropic resolution 3D and conventional 2D T2-weighted fast spin-echo sequences at 3.0 T. Skeletal Radiol 2016; 45 (07) 899-908
  • 23 Park HJ, Lee SY, Choi YJ, Hong HP, Park SJ, Park JH. et al. 3D isotropic T2-weighted fast spin echo (VISTA) versus 2D T2-weighted fast spin echo in evaluation of the calcaneofibular ligament in the oblique coronal plane. Clin Radiol 2017; 72 (02) 176.E1-E7
  • 24 Choo HJ, Lee SJ, Kim DW, Jeong HW, Gwak H. Multibanded anterior talofibular ligaments in normal ankles and sprained ankles using 3D isotropic proton density-weighted fast spin-echo MRI sequence. AJR Am J Roentgenol 2014; 202 (01) W87-W94
  • 25 Akatsuka Y, Teramoto A, Takashima H, Watanabe K, Yamashita T. Morphological evaluation of the calcaneofibular ligament in different ankle positions using a three-dimensional MRI sequence. Surg Radiol Anat 2019; 41 (03) 307-311
  • 26 Teramoto A, Akatsuka Y, Takashima H. et al. 3D MRI evaluation of morphological characteristics of lateral ankle ligaments in injured patients and uninjured controls. J Orthop Sci 2020; 25 (01) 183-187
  • 27 Clanton TO, Porter DA. Primary care of foot and ankle injuries in the athlete. Clin Sports Med 1997; 16 (03) 435-466
  • 28 Kofotolis ND, Kellis E, Vlachopoulos SP. Ankle sprain injuries and risk factors in amateur soccer players during a 2-year period. Am J Sports Med 2007; 35 (03) 458-466
  • 29 Mengiardi B, Pinto C, Zanetti M. Medial collateral ligament complex of the ankle: MR imaging anatomy and findings in medial instability. Semin Musculoskelet Radiol 2016; 20 (01) 91-103
  • 30 Mengiardi B, Zanetti M, Schöttle PB. et al. Spring ligament complex: MR imaging-anatomic correlation and findings in asymptomatic subjects. Radiology 2005; 237 (01) 242-249
  • 31 Gyftopoulos S, Woertler K. Ankle and foot. In: Hodler J, Kubik-Huch RA, von Schulthess GK. eds. Musculoskeletal Diseases 2021–2024: Diagnostic Imaging. Cham, Switzerland: Springer International; 2021: 107-120
  • 32 Nussbaum ED, Hosea TM, Sieler SD, Incremona BR, Kessler DE. Prospective evaluation of syndesmotic ankle sprains without diastasis. Am J Sports Med 2001; 29 (01) 31-35
  • 33 Sman AD, Hiller CE, Refshauge KM. Diagnostic accuracy of clinical tests for diagnosis of ankle syndesmosis injury: a systematic review. Br J Sports Med 2013; 47 (10) 620-628
  • 34 Rammelt S, Zwipp H, Grass R. Injuries to the distal tibiofibular syndesmosis: an evidence-based approach to acute and chronic lesions. Foot Ankle Clin 2008; 13 (04) 611-633 , vii–viii
  • 35 Ogilvie-Harris DJ, Gilbart MK, Chorney K. Chronic pain following ankle sprains in athletes: the role of arthroscopic surgery. Arthroscopy 1997; 13 (05) 564-574
  • 36 Czajka CM, Tran E, Cai AN, DiPreta JA. Ankle sprains and instability. Med Clin North Am 2014; 98 (02) 313-329
  • 37 Oae K, Takao M, Naito K. et al. Injury of the tibiofibular syndesmosis: value of MR imaging for diagnosis. Radiology 2003; 227 (01) 155-161
  • 38 Hermans JJ, Ginai AZ, Wentink N, Hop WC, Beumer A. The additional value of an oblique image plane for MRI of the anterior and posterior distal tibiofibular syndesmosis. Skeletal Radiol 2011; 40 (01) 75-83
  • 39 Kim M, Choi YS, Jeong MS. et al. Comprehensive assessment of ankle syndesmosis injury using 3D isotropic turbo spin-echo sequences: diagnostic performance compared with that of conventional and oblique 3-T MRI. AJR Am J Roentgenol 2017; 208 (04) 827-833
  • 40 Chhabra A, Soldatos T, Chalian M. et al. 3-Tesla magnetic resonance imaging evaluation of posterior tibial tendon dysfunction with relevance to clinical staging. J Foot Ankle Surg 2011; 50 (03) 320-328
  • 41 O'Neil JT, Pedowitz DI, Kerbel YE, Codding JL, Zoga AC, Raikin SM. Peroneal tendon abnormalities on routine magnetic resonance imaging of the foot and ankle. Foot Ankle Int 2016; 37 (07) 743-747
  • 42 Saxena A, Luhadiya A, Ewen B, Goumas C. Magnetic resonance imaging and incidental findings of lateral ankle pathologic features with asymptomatic ankles. J Foot Ankle Surg 2011; 50 (04) 413-415
  • 43 Ersoz E, Tokgoz N, Kaptan AY, Ozturk AM, Ucar M. Anatomical variations related to pathological conditions of the peroneal tendon: evaluation of ankle MRI with a 3D SPACE sequence in symptomatic patients. Skeletal Radiol 2019; 48 (08) 1221-1231
  • 44 Berndt AL, Harty M. Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg Am 1959; 41-A: 988-1020
  • 45 Rikken QGH, Kerkhoffs GMMJ. Osteochondral lesions of the talus: an individualized treatment paradigm from the Amsterdam perspective. Foot Ankle Clin 2021; 26 (01) 121-136
  • 46 Mintz DN, Tashjian GS, Connell DA, Deland JT, O'Malley M, Potter HG. Osteochondral lesions of the talus: a new magnetic resonance grading system with arthroscopic correlation. Arthroscopy 2003; 19 (04) 353-359
  • 47 Verhagen RA, Maas M, Dijkgraaf MG, Tol JL, Krips R, van Dijk CN. Prospective study on diagnostic strategies in osteochondral lesions of the talus. Is MRI superior to helical CT?. J Bone Joint Surg Br 2005; 87 (01) 41-46
  • 48 Hannon CP, Smyth NA, Murawski CD. et al. Osteochondral lesions of the talus: aspects of current management. Bone Joint J 2014; 96-B (02) 164-171
  • 49 Tan TC, Wilcox DM, Frank L. et al. MR imaging of articular cartilage in the ankle: comparison of available imaging sequences and methods of measurement in cadavers. Skeletal Radiol 1996; 25 (08) 749-755
  • 50 Recht MP, Piraino DW, Paletta GA, Schils JP, Belhobek GH. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology 1996; 198 (01) 209-212
  • 51 Recht MP, Donley BG. Magnetic resonance imaging of the foot and ankle. J Am Acad Orthop Surg 2001; 9 (03) 187-199
  • 52 Glaser C, D'Anastasi M, Theisen D. et al. Understanding 3D TSE sequences: advantages, disadvantages, and application in MSK imaging. Semin Musculoskelet Radiol 2015; 19 (04) 321-327
  • 53 Link TM, Stahl R, Woertler K. Cartilage imaging: motivation, techniques, current and future significance. Eur Radiol 2007; 17 (05) 1135-1146
  • 54 Gold GE, Chen CA, Koo S, Hargreaves BA, Bangerter NK. Recent advances in MRI of articular cartilage. AJR Am J Roentgenol 2009; 193 (03) 628-638
  • 55 Ulbrich EJ, Zubler V, Sutter R, Espinosa N, Pfirrmann CW, Zanetti M. Ligaments of the Lisfranc joint in MRI: 3D-SPACE (sampling perfection with application optimized contrasts using different flip-angle evolution) sequence compared to three orthogonal proton-density fat-saturated (PD fs) sequences. Skeletal Radiol 2013; 42 (03) 399-409
  • 56 Kim TH, Moon SG, Jung HG, Kim NR. Subtalar instability: imaging features of subtalar ligaments on 3D isotropic ankle MRI. BMC Musculoskelet Disord 2017; 18 (01) 475
  • 57 Choo HJ, Suh JS, Kim SJ, Huh YM, Kim MI, Lee JW. Ankle MRI for anterolateral soft tissue impingement: increased accuracy with the use of contrast-enhanced fat-suppressed 3D-FSPGR MRI. Korean J Radiol 2008; 9 (05) 409-415
  • 58 Zhang Y, He X, Li J. et al. MRI study on tibial nerve of the ankle canal and its branches: a method of multiplanar reconstruction with 3D-FIESTA-C sequences. Research Square; 2020
  • 59 Nordeck SM, Koerper CE, Adler A. et al. Simulated radiographic bone and joint modeling from 3D ankle MRI: feasibility and comparison with radiographs and 2D MRI. Skeletal Radiol 2017; 46 (05) 651-664