Open Access
CC BY-NC-ND 4.0 · Rev Bras Ortop (Sao Paulo) 2022; 57(01): 001-013
DOI: 10.1055/s-0041-1731417
Artigo de Atualização
Artroscopia e Traumatologia do Esporte

Muscle Injury: Pathophysiology, Diagnosis, and Treatment[*]

Article in several languages: português | English
1   Grupo de Medicina do Esporte, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
,
1   Grupo de Medicina do Esporte, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
2   Centro de Excelência Médica da FIFA, São Paulo, SP, Brasil
,
1   Grupo de Medicina do Esporte, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
2   Centro de Excelência Médica da FIFA, São Paulo, SP, Brasil
,
1   Grupo de Medicina do Esporte, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
2   Centro de Excelência Médica da FIFA, São Paulo, SP, Brasil
› Author Affiliations
Preview

Abstract

Skeletal muscle tissue has the largest mass in the human body, accounting for 45% of the total weight. Muscle injuries can be caused by bruising, stretching or laceration. The current classification divides these injuries into mild, moderate and severe. The signs and symptoms of grade I lesions are edema and discomfort; grade II, loss of function, gaps and possible ecchymosis; and grade III, complete rupture, severe pain and extensive hematoma. The diagnosis can be confirmed by ultrasound, which is dynamic and cheap, but examiner dependent; and magnetic resonance imaging (MRI), which provides better anatomical definition. The initial phase of the treatment consists in protection, rest, optimal use of the affected limb, and cryotherapy. Nonsteroidal anti-inflammatory drugs (NSAIDs), ultrasound therapy, strengthening and stretching after the initial phase and range of motion without pain are used in the clinical treatment. On the other hand, surgery has precise indications: hematoma drainage and muscle-tendon reinsertion and reinforcement.

Financial Support

There was no financial support from public, commercial, or non-profit sources.


* Work carried out at the Laboratory of Medical Researchof the Musculoskeletal System - LIM41 of the Department of Orthopedics and Traumatology of FMUSP, Sports Medicine Group of the Institute of Orthopedics and Traumatology (IOT) of the Hospital das Clínicas of FMUSP and Center of Medical Excellence of FIFA.




Publication History

Received: 06 October 2020

Accepted: 08 March 2021

Article published online:
20 January 2022

© 2022. Sociedade Brasileira de Ortopedia e Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil