Subscribe to RSS
DOI: 10.1055/s-0041-1732386
Detecção de microrganismos em dispositivos ortopédicos sonicados clínicos usando cultura convencional e qPCR
Article in several languages: português | EnglishResumo
Objetivo Avaliar a sensibilidade e a especificidade da reação em cadeia de polimerase em tempo real quantitativa (quantitative real-time polymerase chain reaction, qPCR, em inglês) para a triagem do gene rDNA 16S, com a utilização do fluido sonicado de implantes ortopédicos.
Métodos Um estudo retrospectivo foi realizado em 73 fluidos sonicados obtidos de pacientes com infecção associada aos implantes ortopédicos. As amostras foram submetidas a cultura convencional e a teste molecular utilizando ionização e dessorção a laser assistida por matriz com espectrometria de massa por tempo de voo (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, MALDI-TOF MS, em inglês) e qPCR para o gene rDNA 16S. Os valores limiares do ciclo foram usados para definir um ponto de corte para a qPCR do gene rDNA 16S para culturas negativas e positivas.
Resultados Não foram observadas diferenças estatísticas entre os grupos de cultura positiva e negativa com base no tempo desde a primeira cirurgia até a infecção (p = 0,958), na idade (p = 0,269), ou nas comorbidades em geral. No entanto, uma diferença estatística foi encontrada entre a duração média do uso de antibióticos antes da remoção do dispositivo (3,41 versus 0,94; p = 0,016). O DNA bacteriano foi identificado em todas as amostras dos fluidos sonicados. Os limiares do ciclo médio de culturas positivas e negativas foram de 25,6 e 27,3, respectivamente (p < 0,001). Como uma ferramenta de diagnóstico, um corte do limite do ciclo de 26,89 demonstrou uma área sob a curva da característica de operação do receptor de 0,877 (p ≤ 0,001).
Conclusão A presença de agentes antimicrobianos por mais de 72 horas diminuiu a positividade da cultura, mas não influenciou os resultados da qPCR. Apesar disso, a amplificação do rDNA 16S pode sobrestimar o diagnóstico de infecção.
Palavras-chave
sonicação - infecções - qPCR - espectrometria de massas por ionização e dessorção a laser assistida por matriz - próteses e implantesSuporte Financeiro
Este estudo foi apoiado por uma bolsa do MCTIC/CNPq, número 28/2018, nível B.
Publication History
Received: 11 September 2020
Accepted: 19 February 2021
Article published online:
01 October 2021
© 2021. Sociedade Brasileira de Ortopedia e Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
Referências
- 1 Trampuz A, Piper KE, Jacobson MJ. et al. Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med 2007; 357 (07) 654-663
- 2 Zhao L, Ashraf MA. Influence of Silver-hydroxyapatite Nanocomposite Coating on Biofilm Formation of Joint Prosthesis and Its Mechanism. West Indian Med J 2015; 64 (05) 506-513
- 3 Boles BR, Horswill AR. Staphylococcal biofilm disassembly. Trends Microbiol 2011; 19 (09) 449-455
- 4 Marques SC, das Graças Oliveira Silva Rezende J, de Freitas Alves LA. et al. Formation of biofilms by Staphylococcus aureus on stainless steel and glass surfaces and its resistance to some selected chemical sanitizers. Braz J Microbiol 2007; 38 (03) 538-543
- 5 Stoodley P, Conti SF, DeMeo PJ. et al. Characterization of a mixed MRSA/MRSE biofilm in an explanted total ankle arthroplasty. FEMS Immunol Med Microbiol 2011; 62 (01) 66-74
- 6 Atkins BL, Athanasou N, Deeks JJ. et al; The OSIRIS Collaborative Study Group. Prospective evaluation of criteria for microbiological diagnosis of prosthetic-joint infection at revision arthroplasty. J Clin Microbiol 1998; 36 (10) 2932-2939
- 7 Osmon DR, Berbari EF, Berendt AR. et al; Infectious Diseases Society of America. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 2013; 56 (01) e1-e25
- 8 Dudareva M, Barrett L, Figtree M. et al. Sonication versus Tissue Sampling for Diagnosis of Prosthetic Joint and Other Orthopedic Device-Related Infections. J Clin Microbiol 2018; 56 (12) e00688-e00718
- 9 Moran E, Byren I, Atkins BL. The diagnosis and management of prosthetic joint infections. J Antimicrob Chemother 2010; 65 (Suppl. 03) iii45-iii54
- 10 Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med 2004; 351 (16) 1645-1654
- 11 Tunney MM, Patrick S, Curran MD. et al. Detection of prosthetic hip infection at revision arthroplasty by immunofluorescence microscopy and PCR amplification of the bacterial 16S rRNA gene. J Clin Microbiol 1999; 37 (10) 3281-3290
- 12 Achermann Y, Vogt M, Leunig M, Wüst J, Trampuz A. Improved diagnosis of periprosthetic joint infection by multiplex PCR of sonication fluid from removed implants. J Clin Microbiol 2010; 48 (04) 1208-1214
- 13 Gomez E, Cazanave C, Cunningham SA. et al. Prosthetic joint infection diagnosis using broad-range PCR of biofilms dislodged from knee and hip arthroplasty surfaces using sonication. J Clin Microbiol 2012; 50 (11) 3501-3508
- 14 Cazanave C, Greenwood-Quaintance KE, Hanssen AD. et al. Rapid molecular microbiologic diagnosis of prosthetic joint infection. J Clin Microbiol 2013; 51 (07) 2280-2287
- 15 Ryu SY, Greenwood-Quaintance KE, Hanssen AD, Mandrekar JN, Patel R. Low sensitivity of periprosthetic tissue PCR for prosthetic knee infection diagnosis. Diagn Microbiol Infect Dis 2014; 79 (04) 448-453
- 16 Dora C, Altwegg M, Gerber C, Böttger EC, Zbinden R. Evaluation of conventional microbiological procedures and molecular genetic techniques for diagnosis of infections in patients with implanted orthopedic devices. J Clin Microbiol 2008; 46 (02) 824-825
- 17 Onsea J, Depypere M, Govaert G. et al. Accuracy of Tissue and Sonication Fluid Sampling for the Diagnosis of Fracture-Related Infection: A Systematic Review and Critical Appraisal. J Bone Jt Infect 2018; 3 (04) 173-181
- 18 Chen JH, Ho PL, Kwan GS. et al. Direct bacterial identification in positive blood cultures by use of two commercial matrix-assisted laser desorption ionization-time of flight mass spectrometry systems. J Clin Microbiol 2013; 51 (06) 1733-1739
- 19 Bazzi AM, Rabaan AA, El Edaily Z, John S, Fawarah MM, Al-Tawfiq JA. Comparison among four proposed direct blood culture microbial identification methods using MALDI-TOF MS. J Infect Public Health 2017; 10 (03) 308-315
- 20 Barberino MG, Silva MO, Arraes ACP, Correia LC, Mendes AV. Direct identification from positive blood broth culture by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS). Braz J Infect Dis 2017; 21 (03) 339-342
- 21 Parvizi J, Gehrke T. Procedings of the Second International Consensus Meeting on Musculoskeletal Infection. Brooklandville, Maryland: Data Tracer Publishing Company; 2018
- 22 Parvizi J, Gehrke T. International Consensus Group on Periprosthetic Joint Infection. Definition of periprosthetic joint infection. J Arthroplasty 2014; 29 (07) 1331
- 23 Ferreira L, Sánchez-Juanes F, González-Avila M. et al. Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2010; 48 (06) 2110-2115
- 24 Yang S, Lin S, Kelen GD. et al. Quantitative multiprobe PCR assay for simultaneous detection and identification to species level of bacterial pathogens. J Clin Microbiol 2002; 40 (09) 3449-3454
- 25 Tasca Ribeiro VS, Tuon FF, Kraft L. et al. Conventional culture method and qPCR using 16S rDNA for tissue bank: a comparison using a model of cardiac tissue contamination. J Med Microbiol 2018; 67 (11) 1571-1575
- 26 Walker LC, Clement ND, Wilson I, Hashmi M, Samuel J, Deehan DJ. The Importance Of Multi-site Intra-operative Tissue Sampling In The Diagnosis Of Hip And Knee Periprosthetic Joint Infection - Results From A Single Centre Study. J Bone Jt Infect 2020; 5 (03) 151-159
- 27 Sanabria A, Røkeberg MEO, Johannessen M, Sollid JE, Simonsen GS, Hanssen AM. Culturing periprosthetic tissue in BacT/Alert® Virtuo blood culture system leads to improved and faster detection of prosthetic joint infections. BMC Infect Dis 2019; 19 (01) 607
- 28 Duployez C, Wallet F, Migaud H, Senneville E, Loiez C. Culturing Periprosthetic Tissues in BacT/Alert® Virtuo Blood Culture Bottles for a Short Duration of Post-operative Empirical Antibiotic Therapy. J Bone Jt Infect 2020; 5 (03) 145-150
- 29 Cai Y, Fang X, Chen Y. et al. Metagenomic next generation sequencing improves diagnosis of prosthetic joint infection by detecting the presence of bacteria in periprosthetic tissues. Int J Infect Dis 2020; 96: 573-578
- 30 Kuo FC, Lu YD, Wu CT, You HL, Lee GB, Lee MS. Comparison of molecular diagnosis with serum markers and synovial fluid analysis in patients with prosthetic joint infection. Bone Joint J 2018; 100-B (10) 1345-1351
- 31 Stylianakis A, Schinas G, Thomaidis PC. et al. Combination of conventional culture, vial culture, and broad-range PCR of sonication fluid for the diagnosis of prosthetic joint infection. Diagn Microbiol Infect Dis 2018; 92 (01) 13-18
- 32 Shohat N, Goswami K, Tan TL. et al. ESCMID Study Group of Implant Associated Infections (ESGIAI) and the Northern Infection Network of Joint Arthroplasty (NINJA). 2020 Frank Stinchfield Award: Identifying who will fail following irrigation and debridement for prosthetic joint infection. Bone Joint J 2020; 102-B (7_Supple_B): 11-19