Subscribe to RSS
DOI: 10.1055/s-0041-1733879
Effect of Surgical Design Variations on the Knee Contact Behavior during Anterior Cruciate Ligament Reconstruction
Funding This work is supported by a grant (#U01 EB015410-01A1) from the National Institute of Health NIH.Abstract
In this study, we aimed to develop an in-silico synthesis of the effect of critical surgical design parameters on articular contact behavior for a bone-patellar-tendon-bone anterior cruciate ligament reconstruction (ACL-R) surgery. A previously developed finite element model of the knee joint consisting of all relevant soft tissues was employed. The knee model was further updated with additional features to develop the parametric FE model of the biomechanical experiments that depicted the ACL-R surgery. The parametricity was created involving femoral tunnel architecture (orientations and locations) and graft fixation characteristics (pretension and angle of fixation). A global sensitivity analysis based on variance decomposition was used to investigate the contribution of the surgical parameters to the uncertainty in response to the ACL-R joint. Our examinations indicated that the total contact force was primarily influenced by either combined or individual action of the graft pretension and fixation angle, with a modest contribution of the graft insertion sites. The joint contact center and area were affected mainly by the angle of fixation and the tunnel placements. Graft pretension played the dominant role in the maximum contact pressure variability, an observation that has been well-documented in the literature. Interestingly, the joint contact behavior was almost insensitive to the tunnel's coronal and sagittal orientations. Our data provide an evaluation of how the surgical parameters affect the knee joint's contact behavior after ACL-R and may provide additional information to better explain the occurrence of osteoarthritis as an aftermath of such surgery.
Authors' Contributions
All authors have read and approved this submission. The first author carried out analyses. All participated in the definition, design, and development of the work. Finally, the manuscript was written by all authors.
Publication History
Received: 06 April 2020
Accepted: 21 June 2021
Article published online:
10 August 2021
© 2021. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Shelton WR, Fagan BC. Autografts commonly used in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 2011; 19 (05) 259-264
- 2 Abram SGF, Price AJ, Judge A, Beard DJ. Anterior cruciate ligament (ACL) reconstruction and meniscal repair rates have both increased in the past 20 years in England: hospital statistics from 1997 to 2017. Br J Sports Med 2020; 54 (05) 286-291
- 3 Zbrojkiewicz D, Vertullo C, Grayson JE. Increasing rates of anterior cruciate ligament reconstruction in young Australians, 2000-2015. Med J Aust 2018; 208 (08) 354-358
- 4 Tashman S, Kolowich P, Collon D, Anderson K, Anderst W. Dynamic function of the ACL-reconstructed knee during running. Clin Orthop Relat Res 2007; 454 (454) 66-73
- 5 Biau DJ, Tournoux C, Katsahian S, Schranz P, Nizard R. ACL reconstruction: a meta-analysis of functional scores. Clin Orthop Relat Res 2007; 458 (458) 180-187
- 6 Fithian DC, Paxton EW, Stone ML. et al. Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament-injured knee. Am J Sports Med 2005; 33 (03) 335-346
- 7 Lohmander LS, Östenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 2004; 50 (10) 3145-3152
- 8 Lohmander LS, Gerhardsson de Verdier M, Rollof J, Nilsson PM, Engström G. Incidence of severe knee and hip osteoarthritis in relation to different measures of body mass: a population-based prospective cohort study. Ann Rheum Dis 2009; 68 (04) 490-496
- 9 Paschos NK. Anterior cruciate ligament reconstruction and knee osteoarthritis. World J Orthop 2017; 8 (03) 212-217
- 10 Paschos NK, Howell SM. Anterior cruciate ligament reconstruction: principles of treatment. EFORT Open Rev 2017; 1 (11) 398-408
- 11 Nakamura N, Zaffagnini S, Marx RG, Musahl V. Controversies in the Technical Aspects of ACL Reconstruction: An Evidence-Based Medicine Approach. Berlin, Germany: Springer; 2017
- 12 Bush-Joseph CA, Hurwitz DE, Patel RR. et al. Dynamic function after anterior cruciate ligament reconstruction with autologous patellar tendon. Am J Sports Med 2001; 29 (01) 36-41
- 13 Georgoulis AD, Papadonikolakis A, Papageorgiou CD, Mitsou A, Stergiou N. Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am J Sports Med 2003; 31 (01) 75-79
- 14 Georgoulis AD, Ristanis S, Chouliaras V, Moraiti C, Stergiou N. Tibial rotation is not restored after ACL reconstruction with a hamstring graft. Clin Orthop Relat Res 2007; 454 (454) 89-94
- 15 Van de Velde SK, Gill TJ, DeFrate LE, Papannagari R, Li G. The effect of anterior cruciate ligament deficiency and reconstruction on the patellofemoral joint. Am J Sports Med 2008; 36 (06) 1150-1159
- 16 Webster KE, Feller JA. Alterations in joint kinematics during walking following hamstring and patellar tendon anterior cruciate ligament reconstruction surgery. Clin Biomech (Bristol, Avon) 2011; 26 (02) 175-180
- 17 Zabala ME, Favre J, Scanlan SF, Donahue J, Andriacchi TP. Three-dimensional knee moments of ACL reconstructed and control subjects during gait, stair ascent, and stair descent. J Biomech 2013; 46 (03) 515-520
- 18 Hsieh Y-F, Draganich LF, Ho SH, Reider B. The effects of removal and reconstruction of the anterior cruciate ligament on patellofemoral kinematics. Am J Sports Med 1998; 26 (02) 201-209
- 19 Stergiou N, Ristanis S, Moraiti C, Georgoulis AD. Tibial rotation in anterior cruciate ligament (ACL)-deficient and ACL-reconstructed knees: a theoretical proposition for the development of osteoarthritis. Sports Med 2007; 37 (07) 601-613
- 20 Mesfar W, Shirazi-Adl A. Biomechanics of changes in ACL and PCL material properties or prestrains in flexion under muscle force-implications in ligament reconstruction. Comput Methods Biomech Biomed Engin 2006; 9 (04) 201-209
- 21 Halonen KS, Mononen ME, Töyräs J, Kröger H, Joukainen A, Korhonen RK. Optimal graft stiffness and pre-strain restore normal joint motion and cartilage responses in ACL reconstructed knee. J Biomech 2016; 49 (13) 2566-2576
- 22 Saxby DJ, Bryant AL, Modenese L. et al. Tibiofemoral contact forces in the anterior cruciate ligament-reconstructed knee. Med Sci Sports Exerc 2016; 48 (11) 2195-2206
- 23 Morimoto Y, Ferretti M, Ekdahl M, Smolinski P, Fu FH. Tibiofemoral joint contact area and pressure after single- and double-bundle anterior cruciate ligament reconstruction. Arthroscopy 2009; 25 (01) 62-69
- 24 Wang L, Lin L, Feng Y. et al. Anterior cruciate ligament reconstruction and cartilage contact forces–A 3D computational simulation. Clin Biomech (Bristol, Avon) 2015; 30 (10) 1175-1180
- 25 Westermann RW, Wolf BR, Elkins J. Optimizing graft placement in anterior cruciate ligament reconstruction: A finite element analysis. J Knee Surg 2017; 30 (02) 97-106
- 26 Koga H, Muneta T, Yagishita K. et al. Effect of posterolateral bundle graft fixation angles on graft tension curves and load sharing in double-bundle anterior cruciate ligament reconstruction using a transtibial drilling technique. Arthroscopy 2013; 29 (03) 529-538
- 27 Koga H, Muneta T, Yagishita K. et al. Effect of posterolateral bundle graft fixation angles on clinical outcomes in double-bundle anterior cruciate ligament reconstruction: a randomized controlled trial. Am J Sports Med 2015; 43 (05) 1157-1164
- 28 Kondo E, Yasuda K, Kitamura N. et al. Effects of initial graft tension on clinical outcome after anatomic double-bundle anterior cruciate ligament reconstruction: comparison of two graft tension protocols. BMC Musculoskelet Disord 2016; 17 (01) 65
- 29 Mae T, Shino K, Nakata K, Toritsuka Y, Otsubo H, Fujie H. Optimization of graft fixation at the time of anterior cruciate ligament reconstruction. Part I: effect of initial tension. Am J Sports Med 2008; 36 (06) 1087-1093
- 30 Mae T, Shino K, Nakata K, Toritsuka Y, Otsubo H, Fujie H. Optimization of graft fixation at the time of anterior cruciate ligament reconstruction. Part II: effect of knee flexion angle. Am J Sports Med 2008; 36 (06) 1094-1100
- 31 Peña E, Calvo B, Martinez MA, Palanca D, Doblaré M. Influence of the tunnel angle in ACL reconstructions on the biomechanics of the knee joint. Clin Biomech (Bristol, Avon) 2006; 21 (05) 508-516
- 32 van Kampen A, Wymenga AB, van der Heide HJ, Bakens HJ. The effect of different graft tensioning in anterior cruciate ligament reconstruction: a prospective randomized study. Arthroscopy 1998; 14 (08) 845-850
- 33 Salehghaffari S, Dhaher YY. A model of articular cruciate ligament reconstructive surgery: a validation construct and computational insights. J Biomech 2014; 47 (07) 1609-1617
- 34 Salehghaffari S, Dhaher YY. A phenomenological contact model: understanding the graft-tunnel interaction in anterior cruciate ligament reconstructive surgery. J Biomech 2015; 48 (10) 1844-1851
- 35 Adouni M, Faisal TR, Gaith M, Dhaher YY. A multiscale synthesis: characterizing acute cartilage failure under an aggregate tibiofemoral joint loading. Biomech Model Mechanobiol 2019; 18 (06) 1563-1575
- 36 Andriacchi TP, Dyrby CO. Interactions between kinematics and loading during walking for the normal and ACL deficient knee. J Biomech 2005; 38 (02) 293-298
- 37 Dhaher YY, Kwon TH, Barry M. The effect of connective tissue material uncertainties on knee joint mechanics under isolated loading conditions. J Biomech 2010; 43 (16) 3118-3125
- 38 Adouni M, Dhaher YY. A multi-scale elasto-plastic model of articular cartilage. J Biomech 2016; 49 (13) 2891-2898
- 39 Barry MJ, Kwon T-H, Dhaher YY. Probabilistic musculoskeletal modeling of the knee: A preliminary examination of an ACL-reconstruction. Paper presented at: Engineering in Medicine and Biology Society (EMBC) Annual International Conference of the IEEE2010, Buenos Aires, Argentina: 2010
- 40 Faisal TR, Adouni M, Dhaher YY. The effect of fibrillar degradation on the mechanics of articular cartilage: a computational model. Biomech Model Mechanobiol 2019; 18 (03) 733-751
- 41 Harrison EL, Duenkel N, Dunlop R, Russell G. Evaluation of single-leg standing following anterior cruciate ligament surgery and rehabilitation. Phys Ther 1994; 74 (03) 245-252
- 42 Noyes SB-WDF. ACL Injury Rehabilitation: Everything You Need to Know to Restore Knee Function and Return to Activity. Cincinnati, United States: Noyes Knee Institute; 2012
- 43 Dhaher YY, Salehghaffari S, Adouni M. Anterior laxity, graft-tunnel interaction and surgical design variations during anterior cruciate ligament reconstruction: A probabilistic simulation of the surgery. J Biomech 2016; 49 (13) 3009-3016
- 44 Limbert G, Middleton J. A transversely isotropic viscohyperelastic material: Application to the modeling of biological soft connective tissues. Int J Solids Struct 2004; 41 (15) 4237-4260
- 45 Tang H, Buehler MJ, Moran B. A constitutive model of soft tissue: from nanoscale collagen to tissue continuum. Ann Biomed Eng 2009; 37 (06) 1117-1130
- 46 Tang Y, Ballarini R, Buehler MJ, Eppell SJ. Deformation micromechanisms of collagen fibrils under uniaxial tension. J R Soc Interface 2010; 7 (46) 839-850
- 47 Penrose JM, Holt GM, Beaugonin M, Hose DR. Development of an accurate three-dimensional finite element knee model. Comput Methods Biomech Biomed Engin 2002; 5 (04) 291-300
- 48 Hoffer MM. A primer of orthopaedic biomechanics. JAMA 1983; 249 (17) 2397
- 49 Fang H, Rais-Rohani M, Liu Z, Horstemeyer M. A comparative study of metamodeling methods for multiobjective crashworthiness optimization. Comput Struc 2005; 83 (25–26): 2121-2136
- 50 Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput Phys Commun 2010; 181 (02) 259-270
- 51 Segawa H, Koga Y, Omori G, Sakamoto M, Hara T. Influence of the femoral tunnel location and angle on the contact pressure in the femoral tunnel in anterior cruciate ligament reconstruction. Am J Sports Med 2003; 31 (03) 444-448
- 52 Markolf KL, Hame S, Hunter DM. et al. Effects of femoral tunnel placement on knee laxity and forces in an anterior cruciate ligament graft. J Orthop Res 2002; 20 (05) 1016-1024
- 53 Arnold MP, Lie DTT, Verdonschot N, de Graaf R, Amis AA, van Kampen A. The remains of anterior cruciate ligament graft tension after cyclic knee motion. Am J Sports Med 2005; 33 (04) 536-542
- 54 Amis AA, Jakob RP. Anterior cruciate ligament graft positioning, tensioning and twisting. Knee Surg Sports Traumatol Arthrosc 1998; 6 (01, Suppl 1): S2-S12
- 55 Yasuda K, Tsujino J, Tanabe Y, Kaneda K. Effects of initial graft tension on clinical outcome after anterior cruciate ligament reconstruction. Autogenous doubled hamstring tendons connected in series with polyester tapes. Am J Sports Med 1997; 25 (01) 99-106
- 56 Herman BV, Giffin JR. High tibial osteotomy in the ACL-deficient knee with medial compartment osteoarthritis. J Orthop Traumatol 2016; 17 (03) 277-285
- 57 Jordan MJ, Aagaard P, Herzog W. Lower limb asymmetry in mechanical muscle function: A comparison between ski racers with and without ACL reconstruction. Scand J Med Sci Sports 2015; 25 (03) e301-e309
- 58 Sanford BA, Williams JL, Zucker-Levin AR, Mihalko WM. Tibiofemoral joint forces during the stance phase of gait after ACL reconstruction. Open J Biophys 2013; 3 (04) 8
- 59 Tsai LC, McLean S, Colletti PM, Powers CM. Greater muscle co-contraction results in increased tibiofemoral compressive forces in females who have undergone anterior cruciate ligament reconstruction. J Orthop Res 2012; 30 (12) 2007-2014
- 60 Garofalo R, Moretti B, Kombot C, Moretti L, Mouhsine E. Femoral tunnel placement in anterior cruciate ligament reconstruction: rationale of the two incision technique. J Orthop Surg Res 2007; 2: 10-10
- 61 Kaseta MK, DeFrate LE, Charnock BL, Sullivan RT, Garrett Jr WE. Reconstruction technique affects femoral tunnel placement in ACL reconstruction. Clin Orthop Relat Res 2008; 466 (06) 1467-1474
- 62 Plaweski S, Cazal J, Rosell P, Merloz P. Anterior cruciate ligament reconstruction using navigation: a comparative study on 60 patients. Am J Sports Med 2006; 34 (04) 542-552
- 63 Pearle AD, McAllister D, Howell SM. Rationale for strategic graft placement in anterior cruciate ligament reconstruction: I.D.E.A.L. femoral tunnel position. Am J Orthop 2015; 44 (06) 253-258
- 64 Konrath JM, Saxby DJ, Killen BA. et al. Muscle contributions to medial tibiofemoral compartment contact loading following ACL reconstruction using semitendinosus and gracilis tendon grafts. PLoS One 2017; 12 (04) e0176016
- 65 Ateshian GA, Ellis BJ, Weiss JA. Equivalence between short-time biphasic and incompressible elastic material responses. J Biomech Eng 2007; 129 (03) 405-412
- 66 Graf BK, Henry J, Rothenberg M, Vanderby R. Anterior cruciate ligament reconstruction with patellar tendon. An ex vivo study of wear-related damage and failure at the femoral tunnel. Am J Sports Med 1994; 22 (01) 131-135
- 67 Nakamura N, Zaffagnini S, Marx RG, Musahl V. Controversies in the Technical Aspects of ACL Reconstruction. Berlin Heidelberg: Springer; 2017
- 68 Schroeder MJ. A Multi-Domain Synthesis of Neuromechanical Adaptations Post Anterior Cruciate Ligament Reconstructive Surgery. Evanston, Illinois: Biomedical Engineering, Northwestern University; 2014
- 69 Zhang Y, Chen Y, Qiang M. et al. Comparison between three-dimensional CT and conventional radiography in proximal tibia morphology. Medicine (Baltimore) 2018; 97 (30) e11632