RSS-Feed abonnieren
DOI: 10.1055/s-0041-1735148
Which Biomarkers Can Be Used as Diagnostic Tools for Infection in Suspected Sepsis?
Autor*innen
Abstract
The diagnosis of infection in patients with suspected sepsis is frequently difficult to achieve with a reasonable degree of certainty. Currently, the diagnosis of infection still relies on a combination of systemic manifestations, manifestations of organ dysfunction, and microbiological documentation. In addition, the microbiologic confirmation of infection is obtained only after 2 to 3 days of empiric antibiotic therapy. These criteria are far from perfect being at least in part responsible for the overuse and misuse of antibiotics, in the community and in hospital, and probably the main drive for antibiotic resistance. Biomarkers have been studied and used in several clinical settings as surrogate markers of infection to improve their diagnostic accuracy as well as in the assessment of response to antibiotics and in antibiotic stewardship programs. The aim of this review is to provide a clear overview of the current evidence of usefulness of biomarkers in several clinical scenarios, namely, to diagnose infection to prescribe antibiotics, to exclude infection to withhold antibiotics, and to identify the causative pathogen to target antimicrobial treatment. In recent years, new evidence with “old” biomarkers, like C-reactive protein and procalcitonin, as well as new biomarkers and molecular tests, as breathomics or bacterial DNA identification by polymerase chain reaction, increased markedly in different areas adding useful information for clinical decision making at the bedside when adequately used. The recent evidence shows that the information given by biomarkers can support the suspicion of infection and pathogen identification but also, and not less important, can exclude its diagnosis. Although the ideal biomarker has not yet been found, there are various promising biomarkers that represent true evolutions in the diagnosis of infection in patients with suspected sepsis.
Publikationsverlauf
Artikel online veröffentlicht:
20. September 2021
© 2021. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 1992; 20 (06) 864-874
- 2 Levy MM, Fink MP, Marshall JC. et al; SCCM/ESICM/ACCP/ATS/SIS. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 2003; 31 (04) 1250-1256
- 3 Singer M, Deutschman CS, Seymour CW. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315 (08) 801-810
- 4 Rudd KE, Johnson SC, Agesa KM. et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet 2020; 395 (10219): 200-211
- 5 Harris AM, Hicks LA, Qaseem A. High Value Care Task Force of the American College of Physicians and for the Centers for Disease Control and Prevention. Appropriate antibiotic use for acute respiratory tract infection in adults: advice for high-value care from the American College of Physicians and the Centers for Disease Control and Prevention. Ann Intern Med 2016; 164 (06) 425-434
- 6 Simões AS, Couto I, Toscano C. et al. Prevention and control of antimicrobial resistant healthcare-associated infections: the microbiology laboratory rocks!. Front Microbiol 2016; 7: 855
- 7 Simões AS, Maia MR, Gregório J. et al. Participatory implementation of an antibiotic stewardship programme supported by an innovative surveillance and clinical decision-support system. J Hosp Infect 2018; 100 (03) 257-264
- 8 Klein Klouwenberg PM, Cremer OL, van Vught LA. et al. Likelihood of infection in patients with presumed sepsis at the time of intensive care unit admission: a cohort study. Crit Care 2015; 19: 319
- 9 Nora D, Salluh J, Martin-Loeches I, Póvoa P. Biomarker-guided antibiotic therapy-strengths and limitations. Ann Transl Med 2017; 5 (10) 208
- 10 Pierrakos C, Velissaris D, Bisdorff M, Marshall JC, Vincent JL. Biomarkers of sepsis: time for a reappraisal. Crit Care 2020; 24 (01) 287
- 11 Marshall JC, Vincent JL, Fink MP. et al. Measures, markers, and mediators: toward a staging system for clinical sepsis. A report of the Fifth Toronto Sepsis Roundtable, Toronto, Ontario, Canada, October 25-26, 2000. Crit Care Med 2003; 31 (05) 1560-1567
- 12 Póvoa P. Serum markers in community-acquired pneumonia and ventilator-associated pneumonia. Curr Opin Infect Dis 2008; 21 (02) 157-162
- 13 Levy MM, Macias WL, Vincent JL. et al. Early changes in organ function predict eventual survival in severe sepsis. Crit Care Med 2005; 33 (10) 2194-2201
- 14 Salluh JIF, Souza-Dantas VC, Póvoa P. The current status of biomarkers for the diagnosis of nosocomial pneumonias. Curr Opin Crit Care 2017; 23 (05) 391-397
- 15 Póvoa P, Coelho L, Almeida E. et al. Early identification of intensive care unit-acquired infections with daily monitoring of C-reactive protein: a prospective observational study. Crit Care 2006; 10 (02) R63
- 16 Póvoa P, Martin-Loeches I, Ramirez P. et al. Biomarker kinetics in the prediction of VAP diagnosis: results from the BioVAP study. Ann Intensive Care 2016; 6 (01) 32
- 17 Garvik OS, Póvoa P, Magnussen B. et al. C-reactive protein and albumin kinetics before community-acquired bloodstream infections - a Danish population-based cohort study. Epidemiol Infect 2020; 148: e38
- 18 Luyt CE, Combes A, Reynaud C. et al. Usefulness of procalcitonin for the diagnosis of ventilator-associated pneumonia. Intensive Care Med 2008; 34 (08) 1434-1440
- 19 Eggimann P, Que YA, Rebeaud F. Measurement of pancreatic stone protein in the identification and management of sepsis. Biomarkers Med 2019; 13 (02) 135-145
- 20 Llewelyn MJ, Berger M, Gregory M. et al. Sepsis biomarkers in unselected patients on admission to intensive or high-dependency care. Crit Care 2013; 17 (02) R60
- 21 Klein HJ, Niggemann P, Buehler PK. et al. Pancreatic stone protein predicts sepsis in severely burned patients irrespective of trauma severity: a monocentric observational study. Ann Surg 2020; (e-pub ahead of print).
- 22 Pugin J, Daix T, Pagani JL. et al. Serial measurement of pancreatic stone protein for the early detection of sepsis in intensive care unit patients: a prospective multicentric study. Crit Care 2021; 25 (01) 151
- 23 Almirall J, Bolíbar I, Toran P. et al; Community-Acquired Pneumonia Maresme Study Group. Contribution of C-reactive protein to the diagnosis and assessment of severity of community-acquired pneumonia. Chest 2004; 125 (04) 1335-1342
- 24 Holm A, Nexoe J, Bistrup LA. et al. Aetiology and prediction of pneumonia in lower respiratory tract infection in primary care. Br J Gen Pract 2007; 57 (540) 547-554
- 25 Stolz D, Christ-Crain M, Gencay MM. et al. Diagnostic value of signs, symptoms and laboratory values in lower respiratory tract infection. Swiss Med Wkly 2006; 136 (27–28): 434-440
- 26 Coelho L, Rabello L, Salluh J. et al; TAVeM study Group. C-reactive protein and procalcitonin profile in ventilator-associated lower respiratory infections. J Crit Care 2018; 48: 385-389
- 27 Christ-Crain M, Opal SM. Clinical review: the role of biomarkers in the diagnosis and management of community-acquired pneumonia. Crit Care 2010; 14 (01) 203
- 28 Claessens YE, Debray MP, Tubach F. et al. Early chest computed tomography scan to assist diagnosis and guide treatment decision for suspected community-acquired pneumonia. Am J Respir Crit Care Med 2015; 192 (08) 974-982
- 29 Gibot S, Béné MC, Noel R. et al. Combination biomarkers to diagnose sepsis in the critically ill patient. Am J Respir Crit Care Med 2012; 186 (01) 65-71
- 30 Scicluna BP, Klein Klouwenberg PM, van Vught LA. et al. A molecular biomarker to diagnose community-acquired pneumonia on intensive care unit admission. Am J Respir Crit Care Med 2015; 192 (07) 826-835
- 31 Adams E, Goyder C, Heneghan C, Brand L, Ajjawi R. Clinical reasoning of junior doctors in emergency medicine: a grounded theory study. Emerg Med J 2017; 34 (02) 70-75
- 32 Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis 2004; 39 (02) 206-217
- 33 Tang BM, Eslick GD, Craig JC, McLean AS. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. Lancet Infect Dis 2007; 7 (03) 210-217
- 34 Cohen J, Guyatt G, Bernard GR. et al; UK Medical Research Council International Working Party. New strategies for clinical trials in patients with sepsis and septic shock. Crit Care Med 2001; 29 (04) 880-886
- 35 Póvoa P, Coelho L, Almeida E. et al. C-reactive protein as a marker of infection in critically ill patients. Clin Microbiol Infect 2005; 11 (02) 101-108
- 36 Sierra R, Rello J, Bailén MA. et al. C-reactive protein used as an early indicator of infection in patients with systemic inflammatory response syndrome. Intensive Care Med 2004; 30 (11) 2038-2045
- 37 Parlato M, Philippart F, Rouquette A. et al; Captain Study Group. Circulating biomarkers may be unable to detect infection at the early phase of sepsis in ICU patients: the CAPTAIN prospective multicenter cohort study. Intensive Care Med 2018; 44 (07) 1061-1070
- 38 Silvestre JP, Coelho LM, Póvoa PM. Impact of fulminant hepatic failure in C-reactive protein?. J Crit Care 2010; 25 (04) 657.e7-657.e12
- 39 Bota DP, Van Nuffelen M, Zakariah AN, Vincent JL. Serum levels of C-reactive protein and procalcitonin in critically ill patients with cirrhosis of the liver. J Lab Clin Med 2005; 146 (06) 347-351
- 40 Falk G, Fahey T. C-reactive protein and community-acquired pneumonia in ambulatory care: systematic review of diagnostic accuracy studies. Fam Pract 2009; 26 (01) 10-21
- 41 Cals JW, Butler CC, Hopstaken RM, Hood K, Dinant GJ. Effect of point of care testing for C reactive protein and training in communication skills on antibiotic use in lower respiratory tract infections: cluster randomised trial. BMJ 2009; 338: b1374
- 42 Gradel KO, Póvoa P, Garvik OS. et al. Longitudinal trajectory patterns of plasma albumin and C-reactive protein levels around diagnosis, relapse, bacteraemia, and death of acute myeloid leukaemia patients. BMC Cancer 2020; 20 (01) 249
- 43 Schuetz P, Affolter B, Hunziker S. et al. Serum procalcitonin, C-reactive protein and white blood cell levels following hypothermia after cardiac arrest: a retrospective cohort study. Eur J Clin Invest 2010; 40 (04) 376-381
- 44 Silvestre J, Rebanda J, Lourenço C, Póvoa P. Diagnostic accuracy of C-reactive protein and procalcitonin in the early detection of infection after elective colorectal surgery - a pilot study. BMC Infect Dis 2014; 14: 444
- 45 Bouadma L, Luyt CE, Tubach F. et al; PRORATA trial group. Use of procalcitonin to reduce patients' exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet 2010; 375 (9713): 463-474
- 46 Póvoa P, Salluh JI. Biomarker-guided antibiotic therapy in adult critically ill patients: a critical review. Ann Intensive Care 2012; 2 (01) 32
- 47 Jung B, Embriaco N, Roux F. et al. Microbiogical data, but not procalcitonin improve the accuracy of the clinical pulmonary infection score. Intensive Care Med 2010; 36 (05) 790-798
- 48 Mongardon N, Lemiale V, Perbet S. et al. Value of procalcitonin for diagnosis of early onset pneumonia in hypothermia-treated cardiac arrest patients. Intensive Care Med 2010; 36 (01) 92-99
- 49 El-Solh AA, Vora H, Knight III PR, Porhomayon J. Diagnostic use of serum procalcitonin levels in pulmonary aspiration syndromes. Crit Care Med 2011; 39 (06) 1251-1256
- 50 Kamat IS, Ramachandran V, Eswaran H, Guffey D, Musher DM. Procalcitonin to distinguish viral from bacterial pneumonia: a systematic review and meta-analysis. Clin Infect Dis 2020; 70 (03) 538-542
- 51 Kalil AC, Metersky ML, Klompas M. et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2016; 63 (05) e61-e111
- 52 Torres A, Niederman MS, Chastre J. et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur Respir J 2017; 50 (03) 50
- 53 Fagon JY, Chastre J, Hance AJ. et al. Detection of nosocomial lung infection in ventilated patients. Use of a protected specimen brush and quantitative culture techniques in 147 patients. Am Rev Respir Dis 1988; 138 (01) 110-116
- 54 Musher DM, Thorner AR. Community-acquired pneumonia. N Engl J Med 2014; 371 (17) 1619-1628
- 55 Mandell LA, Niederman MS. Aspiration pneumonia. N Engl J Med 2019; 380 (07) 651-663
- 56 Póvoa P, Coelho L, Bos LJ. Biomarkers in pulmonary infections. Clin Pulm Med 2019; 26: 118-125
- 57 Conway Morris A, Kefala K, Wilkinson TS. et al. Diagnostic importance of pulmonary interleukin-1beta and interleukin-8 in ventilator-associated pneumonia. Thorax 2010; 65 (03) 201-207
- 58 Hellyer TP, Morris AC, McAuley DF. et al. Diagnostic accuracy of pulmonary host inflammatory mediators in the exclusion of ventilator-acquired pneumonia. Thorax 2015; 70 (01) 41-47
- 59 Hellyer TP, Anderson NH, Parker J. et al. Effectiveness of biomarker-based exclusion of ventilator-acquired pneumonia to reduce antibiotic use (VAPrapid-2): study protocol for a randomised controlled trial. Trials 2016; 17 (01) 318
- 60 Hellyer TP, McAuley DF, Walsh TS. et al. Biomarker-guided antibiotic stewardship in suspected ventilator-associated pneumonia (VAPrapid2): a randomised controlled trial and process evaluation. Lancet Respir Med 2020; 8 (02) 182-191
- 61 Doernberg SB. Will biomarkers be the answer for antibiotic stewardship?. Lancet Respir Med 2020; 8 (02) 130-132
- 62 Azoulay E, Russell L, Van de Louw A. et al; Nine-i Investigators. Diagnosis of severe respiratory infections in immunocompromised patients. Intensive Care Med 2020; 46 (02) 298-314
- 63 Motley MP, Bennett-Guerrero E, Fries BC, Spitzer ED. Review of viral testing (polymerase chain reaction) and antibody/serology testing for severe acute respiratory syndrome-coronavirus-2 for the intensivist. Crit Care Explor 2020; 2 (06) e0154
- 64 Zhen W, Manji R, Smith E, Berry GJ. Comparison of four molecular in vitro diagnostic assays for the detection of SARS-CoV-2 in nasopharyngeal specimens. J Clin Microbiol 2020; 58 (08) 58
- 65 Kanji JN, Zelyas N, MacDonald C. et al. False negative rate of COVID-19 PCR testing: a discordant testing analysis. Virol J 2021; 18 (01) 13
- 66 West CP, Montori VM, Sampathkumar P. COVID-19 testing: the threat of false-negative results. Mayo Clin Proc 2020; 95 (06) 1127-1129
- 67 Ziegler I, Josefson P, Olcén P, Mölling P, Strålin K. Quantitative data from the SeptiFast real-time PCR is associated with disease severity in patients with sepsis. BMC Infect Dis 2014; 14: 155
- 68 Dark P, Blackwood B, Gates S. et al. Accuracy of LightCycler(®) SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review and meta-analysis. Intensive Care Med 2015; 41 (01) 21-33
- 69 Timsit JF, Ruppé E, Barbier F, Tabah A, Bassetti M. Bloodstream infections in critically ill patients: an expert statement. Intensive Care Med 2020; 46 (02) 266-284
- 70 Nora D, Póvoa P. Antibiotic consumption and ventilator-associated pneumonia rates, some parallelism but some discrepancies. Ann Transl Med 2017; 5 (22) 450
- 71 Conway Morris A, Gadsby N, McKenna JP. et al. 16S pan-bacterial PCR can accurately identify patients with ventilator-associated pneumonia. Thorax 2017; 72 (11) 1046-1048
- 72 Emonet S, Lazarevic V, Leemann Refondini C. et al. Identification of respiratory microbiota markers in ventilator-associated pneumonia. Intensive Care Med 2019; 45 (08) 1082-1092
- 73 Zakharkina T, Martin-Loeches I, Matamoros S. et al. The dynamics of the pulmonary microbiome during mechanical ventilation in the intensive care unit and the association with occurrence of pneumonia. Thorax 2017; 72 (09) 803-810
- 74 Bos LD, Martin-Loeches I, Kastelijn JB. et al. The volatile metabolic fingerprint of ventilator-associated pneumonia. Intensive Care Med 2014; 40 (05) 761-762
- 75 van Oort PM, Povoa P, Schnabel R. et al. The potential role of exhaled breath analysis in the diagnostic process of pneumonia-a systematic review. J Breath Res 2018; 12 (02) 024001
- 76 van Oort PM, de Bruin S, Weda H, Knobel HH, Schultz MJ, Bos LD. On Behalf Of The Mars Consortium. Exhaled breath metabolomics for the diagnosis of pneumonia in intubated and mechanically-ventilated intensive care unit (ICU)-patients. Int J Mol Sci 2017; 18 (02) 18
- 77 van Oort PM, Nijsen T, Weda H. et al; BreathDx Consortium. BreathDx - molecular analysis of exhaled breath as a diagnostic test for ventilator-associated pneumonia: protocol for a European multicentre observational study. BMC Pulm Med 2017; 17 (01) 1
- 78 van Oort PM, Nijsen TM, White IR. et al; BreathDx Consortium. Untargeted molecular analysis of exhaled breath as a diagnostic test for ventilator-associated lower respiratory tract infections (BreathDx). Thorax 2021; . (epub ahead of print).
- 79 Bhattacharya S, Rosenberg AF, Peterson DR. et al. Transcriptomic biomarkers to discriminate bacterial from nonbacterial infection in adults hospitalized with respiratory illness. Sci Rep 2017; 7 (01) 6548
- 80 Póvoa P, Coelho L, Bos LDJ. New biomarkers for respiratory infections. Curr Opin Pulm Med 2020; 26 (03) 232-240
- 81 Piskin N, Aydemir H, Oztoprak N. et al. Inadequate treatment of ventilator-associated and hospital-acquired pneumonia: risk factors and impact on outcomes. BMC Infect Dis 2012; 12: 268
- 82 Martin-Loeches I, Povoa P, Rodríguez A. et al; TAVeM study. Incidence and prognosis of ventilator-associated tracheobronchitis (TAVeM): a multicentre, prospective, observational study. Lancet Respir Med 2015; 3 (11) 859-868
- 83 Bhalodi AA, van Engelen TSR, Virk HS, Wiersinga WJ. Impact of antimicrobial therapy on the gut microbiome. J Antimicrob Chemother 2019; 74 (Suppl. 01) i6-i15
- 84 Mandell LA, Wunderink RG, Anzueto A. et al; Infectious Diseases Society of America, American Thoracic Society. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007; 44 (Suppl. 02) S27-S72
- 85 Metlay JP, Waterer GW, Long AC. et al. Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 2019; 200 (07) e45-e67
- 86 Andreo F, Prat C, Ruiz-Manzano J. et al. Persistence of Streptococcus pneumoniae urinary antigen excretion after pneumococcal pneumonia. Eur J Clin Microbiol Infect Dis 2009; 28 (02) 197-201
- 87 Falguera M, Ruiz-González A, Schoenenberger JA. et al. Prospective, randomised study to compare empirical treatment versus targeted treatment on the basis of the urine antigen results in hospitalised patients with community-acquired pneumonia. Thorax 2010; 65 (02) 101-106
- 88 Avni T, Bieber A, Green H, Steinmetz T, Leibovici L, Paul M. Diagnostic accuracy of PCR alone and compared to urinary antigen testing for detection of legionella spp.: a systematic review. J Clin Microbiol 2016; 54 (02) 401-411
- 89 Drancourt M, Gaydos CA, Summersgill JT, Raoult D. Point-of-care testing for community-acquired pneumonia. Lancet Infect Dis 2013; 13 (08) 647-649
- 90 Torres A, Lee N, Cilloniz C, Vila J, Van der Eerden M. Laboratory diagnosis of pneumonia in the molecular age. Eur Respir J 2016; 48 (06) 1764-1778
- 91 Timbrook TT, Morton JB, McConeghy KW, Caffrey AR, Mylonakis E, LaPlante KL. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis 2017; 64 (01) 15-23
- 92 Blauwkamp TA, Thair S, Rosen MJ. et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat Microbiol 2019; 4 (04) 663-674
- 93 Jamal W, Al Roomi E, AbdulAziz LR, Rotimi VO. Evaluation of Curetis Unyvero, a multiplex PCR-based testing system, for rapid detection of bacteria and antibiotic resistance and impact of the assay on management of severe nosocomial pneumonia. J Clin Microbiol 2014; 52 (07) 2487-2492
- 94 Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB. The microbiome and the respiratory tract. Annu Rev Physiol 2016; 78: 481-504
- 95 Gadsby NJ, Russell CD, McHugh MP. et al. Comprehensive molecular testing for respiratory pathogens in community-acquired pneumonia. Clin Infect Dis 2016; 62 (07) 817-823
- 96 Rouze A, Martin-Loeches I, Povoa P. et al; coVAPid study group. Early bacterial identification among intubated patients with COVID-19 or influenza pneumonia: a European multicenter comparative cohort study. Am J Respir Crit Care Med 2021; (e-pub ahead of print).
- 97 De Waele JJ, Derde L, Bassetti M. Antimicrobial stewardship in ICUs during the COVID-19 pandemic: back to the 90s?. Intensive Care Med 2021; 47 (01) 104-106
- 98 Kunze N, Moerer O, Steinmetz N, Schulze MH, Quintel M, Perl T. Point-of-care multiplex PCR promises short turnaround times for microbial testing in hospital-acquired pneumonia–an observational pilot study in critical ill patients. Ann Clin Microbiol Antimicrob 2015; 14: 33
- 99 Gadsby NJ, McHugh MP, Forbes C. et al. Comparison of Unyvero P55 Pneumonia Cartridge, in-house PCR and culture for the identification of respiratory pathogens and antibiotic resistance in bronchoalveolar lavage fluids in the critical care setting. Eur J Clin Microbiol Infect Dis 2019; 38 (06) 1171-1178