Subscribe to RSS
DOI: 10.1055/s-0041-1735301
Pathways of IFN-alpha Activation in Patients with Cervical Intraepithelial Neoplasia (CIN)
Vias de ativação de IFN-alfa em pacientes com Neoplasia Intraepitelial Cervical (NIC)Abstract
Objective The aim of the present study was to compare the local and systemic expression of the factors linked to the interferon alpha (IFN-α) activation pathway in different degrees of cervical intraepithelial neoplasia (CIN) and cervical cancer.
Methods A total of 128 patients with CIN I, CIN II, CIN III and cervical cancer was evaluated. The real-time polymerase chain reaction (RT-PCR) technique was used to evaluate the gene expression of IFNR1, IFNR2, IFN-α, oligoadenylate synthase (2'5′OAS), cytokine signal suppressor 1 (SOCS) 1, SOCS3, signal transducer and transcription activator 1 (STAT1), and IRF9 from 128 biopsies. A total of 46 out of 128 samples were evaluated by flow cytometry for IFNAR1, IFNAR2, STAT1, IRF7 and IFN-α in peripheral blood cells.
Results Patients with CIN II and III (63 samples) had a low local expression of IFNR1, but not IFNR2. Patients with some degree of injury showed high expression of SOCS1 and SOCS3. Systemically, patients with CIN II and III (20 samples) had a significant increase in IFNR1, IFNR2, STAT1, IRF7, and IFN-α in helper, cytotoxic T lymphocytes, and in monocytes.
Conclusion Patients with high-grade lesions have increased systemic expression of IFN-α and its activation pathways in helper and cytotoxic T lymphocytes, as well as in monocytes due to an exacerbation of the immune response in these patients. This phenomenon is not accompanied by resolution of the lesion due to a defect in the IFN-α activation pathway that revealed by low local IFNAR1 expression and high local expression of SOCS1 and SOCS3.
Resumo
Objetivo O objetivo do presente estudo foi comparar a expressão local e sistêmica dos fatores ligados à via de ativação do interferon alfa (IFN-α) em diferentes graus de neoplasia intraepitelial cervical (NIC) e câncer cervical (CA)
Métodos Foram avaliados 128 pacientes com NIC I, NIC II, NIC III e CA. A técnica de reação de cadeia de polimerase em tempo real (RT-PCR, na sigla em inglês) foi realizada para avaliar a expressão gênica do receptor de interferon (IFNR) 1, IFNR2, IFN-α, 2′-5′-oligoadenilato sintetase (2'5′OAS), supressor de sinalização de citocina (SOCS)1, SOCS3, transdutor de sinal e ativador de transcrição 1 (STAT1) e fator regulador de interferon 9 (IRF9) das 128 biópsias. Das 128 amostras, 46 foram avaliadas por citometria de fluxo para IFNAR1, IFNAR2, STAT1, IRF7 e IFN-α em células de sangue periférico.
Resultados Pacientes com NIC II e III (63 amostras) tiveram baixa expressão local de IFNR1 mas não de IFNR2. Pacientes com algum grau de lesão apresentaram alta expressão de SOCS1 e SOCS3. Sistemicamente, os pacientes com NIC II e III (20 amostras) tiveram um aumento significativo de IFNR1, IFNR2, STAT1, IRF7 e IFN-α em linfócitos T auxiliares, citotóxicos e monócitos.
Conclusão Pacientes com lesões de alto grau apresentam expressão sistêmica aumentada de IFN-α e suas vias de ativação em linfócitos T auxiliares e citotóxicos, bem como em monócitos, devido à exacerbação da resposta imune nesses pacientes. Este fenômeno não é acompanhado pela resolução da lesão devido a um defeito na via de ativação do IFN-α que é revelado pela baixa expressão local de IFNR1 e alta expressão local de SOCS1 e SOCS3.
Contributors
Conception and design of the study: Michelin MA and Murta EFC. Data collection and performance of the experiments: Campos CG, Stark LM, Tirone NR. Statistical analysis and writing of the paper: Ferreira KJA, Vieira JF, and Stark LM. All authors were contributed with the conduction and interpretation of the data.
Publication History
Received: 10 December 2020
Accepted: 02 August 2021
Article published online:
20 October 2021
© 2021. Federação Brasileira de Ginecologia e Obstetrícia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
Referências
- 1 Landy R, Pesola F, Castañón A, Sasieni P. Impact of cervical screening on cervical cancer mortality: estimation using stage-specific results from a nested case-control study. Br J Cancer 2016; 115 (09) 1140-1146
- 2 Kyrgiou M, Athanasiou A, Kalliala IEJ, Paraskevaidi M, Mitra A, Martin-Hirsch PP. et al. Obstetric outcomes after conservative treatment for cervical intraepithelial lesions and early invasive disease. Cochrane Database Syst Rev 2017; 11 (11) CD012847
- 3 Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem 1998; 67: 227-264
- 4 Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le Bon A, Melero I. Direct effects of type I interferons on cells of the immune system. Clin Cancer Res 2011; 17 (09) 2619-2627
- 5 Shi WY, Cao C, Liu L. Interferon α induces the apoptosis of cervical cancer hela cells by activating both the intrinsic mitochondrial pathway and endoplasmic reticulum stress-induced pathway. Int J Mol Sci 2016; 17 (11) 1832
- 6 Pervolaraki K, Rastgou Talemi S, Albrecht D, Bormann F, Bamford C, Mendoza JL. et al. Differential induction of interferon stimulated genes between type I and type III interferons is independent of interferon receptor abundance. PLoS Pathog 2018; 14 (11) e1007420
- 7 Ousman SS, Wang J, Campbell IL. Differential regulation of interferon regulatory factor (IRF)-7 and IRF-9 gene expression in the central nervous system during viral infection. J Virol 2005; 79 (12) 7514-7527
- 8 Levy DE, Marié I, Prakash A. Ringing the interferon alarm: differential regulation of gene expression at the interface between innate and adaptive immunity. Curr Opin Immunol 2003; 15 (01) 52-58
- 9 Yang M, Chen H, Zhou L, Huang X, Su F, Wang P. Identification of SOCS family members with prognostic values in human ovarian cancer. Am J Transl Res 2020; 12 (05) 1824-1838
- 10 Yoshimura A, Nishinakamura H, Matsumura Y, Hanada T. Negative regulation of cytokine signaling and immune responses by SOCS proteins. Arthritis Res Ther 2005; 7 (03) 100-110
- 11 Severa M, Remoli ME, Giacomini E, Ragimbeau J, Lande R, Uzé G. et al. Differential responsiveness to IFN-alpha and IFN-beta of human mature DC through modulation of IFNAR expression. J Leukoc Biol 2006; 79 (06) 1286-1294
- 12 Tirone NR, Peghini BC, Barcelos AC, Murta EF, Michelin MA. Local expression of interferon-alpha and interferon receptors in cervical intraepithelial neoplasia. Cancer Immunol Immunother 2009; 58 (12) 2003-2010
- 13 Bhatla N, Aoki D, Sharma DN, Sankaranarayanan R. Cancer of the cervix uteri. Int J Gynaecol Obstet 2018; 143 (Suppl. 02) 22-36
- 14 Moraga I, Harari D, Schreiber G, Uzé G, Pellegrini S. Receptor density is key to the alpha2/beta interferon differential activities. Mol Cell Biol 2009; 29 (17) 4778-4787
- 15 Marrero-Rodríguez D, Baeza-Xochihua V, Taniguchi-Ponciano K, Huerta-Padilla V, Ponce-Navarrete G, Mantilla A. et al. Interferon epsilon mRNA expression could represent a potential molecular marker in cervical cancer. Int J Clin Exp Pathol 2018; 11 (04) 1979-1988
- 16 Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev 2004; 202: 8-32
- 17 Scott ML, Woodby BL, Ulicny J, Raikhy G, Orr AW, Songock WK. et al. Human papillomavirus 16 E5 inhibits interferon signaling and supports episomal viral maintenance. J Virol 2020; 94 (02) e01582-e19
- 18 Inagaki-Ohara K, Kondo T, Ito M, Yoshimura A. SOCS, inflammation, and cancer. JAK-STAT 2013; 2 (03) e24053
- 19 Sarmah N, Baruah MN, Baruah S. Immune modulation in HLA-G expressing head and neck squamous cell carcinoma in relation to human papilloma virus positivity: a study from Northeast India. Front Oncol 2019; 9: 58
- 20 Marchetti M, Monier MN, Fradagrada A, Mitchell K, Baychelier F, Eid P. et al. Stat-mediated signaling induced by type I and type II interferons (IFNs) is differentially controlled through lipid microdomain association and clathrin-dependent endocytosis of IFN receptors. Mol Biol Cell 2006; 17 (07) 2896-2909
- 21 Peghini BC, Abdalla DR, Barcelos AC, Teodoro Ld, Murta EF, Michelin MA. Local cytokine profiles of patients with cervical intraepithelial and invasive neoplasia. Hum Immunol 2012; 73 (09) 920-926