Subscribe to RSS
DOI: 10.1055/s-0041-1735433
Effect of Stress Generated by Occlusal Cyclic Force on Class I Bulk-Fill Composite Restoration Microleakage
Funding This study was supported by the Faculty of Dentistry, Mahidol University.Abstract
Objective This study aimed to evaluate the effects of different types and restorative techniques of Class I composite restorations with a single loading force on stress distribution and cyclic loading force on microleakage formation.
Materials and Methods Class I cavities were prepared in premolars with 4 mm depth and divided into six groups of different restorations with: (1) Filtek Z250; (2) a 3-mm-thick layer of Filtek Bulk Fill Flowable Restoration and covered with Z250; (3) a 1.5-mm-thick layer of flowable composite and covered with Z250; (4) lining all cavity with flowable composite and restored with Z250; (5) Filtek Bulk Fill Posterior Restoration; and (6) lining all cavity with flowable composite and restored with bulk-fill composite. The specimens with and without cyclic occlusal loading were subjected to microleakage observation. In addition, six different models of Class I restorations corresponding to the microleakage study were generated. Finite element analysis (FEA) was used to identify the stress distribution under a single loading force.
Statistical Analysis Data were statistically analyzed by two-way analysis of variance and multiple comparison. The significance level set at 0.05.
Results Cavity lining or restoration with flowable composite underneath conventional composite reduced stress on composite resin based on FEA (groups 2 and 3). The cyclic stress on composite increased microleakage. Restoration with flowable composite underneath conventional composite reduced the microleakage in Class I restoration (groups 2, 3, and 4).
Conclusion The most effective cavity lining with a flowable composite underneath conventional composite restoration was stress reduction under loading force resulting in microleakage reduction.
Keywords
composite restoration - cyclic loading - finite element - microleakage - occlusal force - stressPublication History
Article published online:
21 October 2021
© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Qvist V, Qvist J, Mjör IA. Placement and longevity of tooth-colored restorations in Denmark. Acta Odontol Scand 1990; 48 (05) 305-311
- 2 Mjör IA, Toffenetti F. Placement and replacement of resin-based composite restorations in Italy. Oper Dent 1992; 17 (03) 82-85
- 3 Nedeljkovic I, De Munck J, Vanloy A. et al. Secondary caries: prevalence, characteristics, and approach. Clin Oral Investig 2020; 24 (02) 683-691
- 4 Papadogiannis Y, Lakes RS, Palaghias G, Helvatjoglu-Antoniades M, Papadogiannis D. Fatigue of packable dental composites. Dent Mater 2007; 23 (02) 235-242
- 5 Reid LC, Kazemi RB, Meiers JC. Effect of fatigue testing on core integrity and post microleakage of teeth restored with different post systems. J Endod 2003; 29 (02) 125-131
- 6 Arisu HD, Uçtasli MB, Eligüzeloglu E, Ozcan S, Omürlü H. The effect of occlusal loading on the microleakage of class V restorations. Oper Dent 2008; 33 (02) 135-141
- 7 Belli R, Geinzer E, Muschweck A, Petschelt A, Lohbauer U. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations. Dent Mater 2014; 30 (04) 424-432
- 8 Anatavara S, Sitthiseripratip K, Senawongse P. Stress relieving behaviour of flowable composite liners: a finite element analysis. Dent Mater J 2016; 35 (03) 369-378
- 9 Soappman MJ, Nazari A, Porter JA, Arola D. A comparison of fatigue crack growth in resin composite, dentin and the interface. Dent Mater 2007; 23 (05) 608-614
- 10 Farzin M, Bahrani F, Nejebat N, Meshki R. The fatigue behavior of restorations used under the rest of removable partial denture. J Dent Biomater 2014; 1: 32-36
- 11 Flury S, Peutzfeldt A, Lussi A. Influence of increment thickness on microhardness and dentin bond strength of bulk fill resin composites. Dent Mater 2014; 30 (10) 1104-1112
- 12 Czasch P, Ilie N. In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin Oral Investig 2013; 17 (01) 227-235
- 13 Alrahlah A, Silikas N, Watts DC. Post-cure depth of cure of bulk fill dental resin-composites. Dent Mater 2014; 30 (02) 149-154
- 14 El-Damanhoury H, Platt J. Polymerization shrinkage stress kinetics and related properties of bulk-fill resin composites. Oper Dent 2014; 39 (04) 374-382
- 15 Moorthy A, Hogg CH, Dowling AH, Grufferty BF, Benetti AR, Fleming GJ. Cuspal deflection and microleakage in premolar teeth restored with bulk-fill flowable resin-based composite base materials. J Dent 2012; 40 (06) 500-505
- 16 Leprince JG, Palin WM, Vanacker J, Sabbagh J, Devaux J, Leloup G. Physico-mechanical characteristics of commercially available bulk-fill composites. J Dent 2014; 42 (08) 993-1000
- 17 Baroudi K, Rodrigues JC. Flowable resin composites: a systematic review and clinical considerations. J Clin Diagn Res 2015; 9 (06) ZE18-ZE24
- 18 Product specification for Filtek Bulk Fill Flowable Restorative (3M ESPE, St.Paul, MN, USA). Accessed 2021 at: https://multimedia.3m.com/mws/media/792321O/filtek-bulk-fill-flowable-restorative-technical-product-profile.pdf
- 19 Product specification for SDR (Dentsply Caulk, Milford, DE, USA). Accessed 2021 at: https://assets.dentsplysirona.com/dentsply/pim/manufacturer/Restorative/Direct_Restoration/Composites__Flowables/Flowables/SDR_flow/SDR%20flow%2B_DFU_EN_DE_IT_FR_ES.pdf
- 20 Product specification for x-tra base (Voco GmbH, Cuxhaven, Germany). Accessed 2021 at: https://www.voco.dental/us/portaldata/1/resources/products/instructions-for-use/us/x-tra-base_ifu_us.pdf
- 21 Habelitz S, Marshall SJ, Marshall Jr GW, Balooch M. Mechanical properties of human dental enamel on the nanometre scale. Arch Oral Biol 2001; 46 (02) 173-183
- 22 Pongprueksa P, Kuphasuk W, Senawongse P. The elastic moduli across various types of resin/dentin interfaces. Dent Mater 2008; 24 (08) 1102-1106
- 23 Zhu J, Rong Q, Wang X, Gao X. Influence of remaining tooth structure and restorative material type on stress distribution in endodontically treated maxillary premolars: A finite element analysis. J Prosthet Dent 2017; 117 (05) 646-655
- 24 Pongprueksa P, De Munck J, Karunratanakul K. et al. Dentin bonding testing using a mini-interfacial fracture toughness approach. J Dent Res 2016; 95 (03) 327-333
- 25 Rosentritt M, Behr M, van der Zel JM, Feilzer AJ. Approach for valuating the influence of laboratory simulation. Dent Mater 2009; 25 (03) 348-352
- 26 Perillo L, Sorrentino R, Apicella D. et al. Nonlinear visco-elastic finite element analysis of porcelain veneers: a submodelling approach to strain and stress distributions in adhesive and resin cement. J Adhes Dent 2010; 12 (05) 403-413
- 27 Versluis A, Tantbirojn D, Pintado MR, DeLong R, Douglas WH. Residual shrinkage stress distributions in molars after composite restoration. Dent Mater 2004; 20 (06) 554-564
- 28 Van Ende A, De Munck J, Lise DP, Van Meerbeek B. Bulk-fill composites: a review of the current literature. J Adhes Dent 2017; 19 (02) 95-109
- 29 Chesterman J, Jowett A, Gallacher A, Nixon P. Bulk-fill resin-based composite restorative materials: a review. Br Dent J 2017; 222 (05) 337-344
- 30 Yoshimine N, Shimada Y, Tagami J, Sadr A. Interfacial adaptation of composite restorations before and after light curing: effects of adhesive and filling technique. J Adhes Dent 2015; 17 (04) 329-336
- 31 Van Meerbeek B, Willems G, Celis JP. et al. Assessment by nano-indentation of the hardness and elasticity of the resin-dentin bonding area. J Dent Res 1993; 72 (10) 1434-1442
- 32 Vidhawan SA, Yap AU, Ornaghi BP. et al. Fatigue stipulation of bulk-fill composites: an in vitro appraisal. Dent Mater 2015; 31 (09) 1068-1074
- 33 Eden E, Topaloglu-Ak A, Cuijpers V, Frencken JE. Micro-CT for measuring marginal leakage of Class II resin composite restorations in primary molars prepared in vivo. Am J Dent 2008; 21 (06) 393-397
- 34 Rosa WL, Piva E, Silva AF. Bond strength of universal adhesives: a systematic review and meta-analysis. J Dent 2015; 43 (07) 765-776
- 35 Ruse ND, Shew R, Feduik D. In vitro fatigue testing of a dental bonding system on enamel. J Biomed Mater Res 1995; 29 (03) 411-415
- 36 Lohbauer U, Belli R, Ferracane JL. Factors involved in mechanical fatigue degradation of dental composite restorations. J Dent Res 2013; 92 (07) 584-591
- 37 Shah MB, Ferracane JL, Kruzic JJ. Mechanistic aspects of fatigue crack growth behavior in resin based dental restorative composites. Dent Mater 2009; 25 (07) 909-916
- 38 Nagem Filho H, Nagem HD, Francisconi PA, Franco EB, Mondelli RF, Coutinho KQ. Volumetric polymerization shrinkage of contemporary composite resins. J Appl Oral Sci 2007; 15 (05) 448-452
- 39 Gonçalves F, Campos LMP, Rodrigues-Júnior EC, AGonçalves F, Campos LMP, Rodrigues-Júnior EC, Costa FV, Marques PA, Francci CE, Braga RR, Boaro LCC. A comparative study of bulk-fill composites: degree of conversion, post-gel shrinkage and cytotoxicity. Braz Oral Res 2018; 8 (32) e17
- 40 Kim RJ, Kim YJ, Choi NS, Lee IB. Polymerization shrinkage, modulus, and shrinkage stress related to tooth-restoration interfacial debonding in bulk-fill composites. J Dent 2015; 43 (04) 430-439
- 41 Mohamed NI, Safy RK, Elezz AF. Microtensile bond strength, marginal leakage, and antibacterial effect of bulk fill resin composite with alkaline fillers versus incremental nanohybrid composite resin. Eur J Dent 2021; 15 (03) 425-432