CC BY-NC-ND 4.0 · Indian J Radiol Imaging 2021; 31(03): 635-643
DOI: 10.1055/s-0041-1735500
Review Article

The Use of Gadolinium in Musculoskeletal MRI—Time to Rethink?

Arwa Elawad
1   Department of Radiology, University Hospitals of Leicester, Leicester, United Kingdom
,
Amit Shah
1   Department of Radiology, University Hospitals of Leicester, Leicester, United Kingdom
,
Mark Davies
2   Department of Radiology, Royal Orthopaedic Hospital, Birmingham, United Kingdom
,
Rajesh Botchu
2   Department of Radiology, Royal Orthopaedic Hospital, Birmingham, United Kingdom
› Author Affiliations
Funding None.

Abstract

Magnetic resonance imaging has continued to evolve over the recent decades, in part, due to the evolution of gadolinium-based contrast agents and their use. These were initially thought to have a relatively low-risk profile. However, there is mounting evidence that trace amounts of gadolinium are retained within the body. To ascertain the current use of gadolinium in medical practice, we performed a survey of musculoskeletal radiologists, within the United Kingdom, Europe and India. The survey demonstrated varied practices amongst all radiologists with relatively indiscriminate use of gadolinium. In this review, we discuss the current evidence for and against the use of gadolinium in musculoskeletal magnetic resonance imaging.



Publication History

Article published online:
07 September 2021

© 2021. Indian Radiological Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Lohrke J, Frenzel T, Endrikat J. et al. 25 years of contrast-enhanced MRI: developments, current challenges and future perspectives. Adv Ther 2016; 33 (01) 1-28
  • 2 Ma LD. Magnetic resonance imaging of musculoskeletal tumors: skeletal and soft tissue masses. Curr Probl Diagn Radiol 1999; 28 (02) 29-62
  • 3 Dean Deyle G. The role of MRI in musculoskeletal practice: a clinical perspective. J Manual Manip Ther 2011; 19 (03) 152-161
  • 4 Khedr S, Hassaan M, Abdelrazek N, Sakr A. Diagnostic impact of echo planar diffusion-weighted magnetic resonance imaging (DWI) in musculoskeletal neoplastic masses using apparent diffusion coefficient (ADC) mapping as a quantitative assessment tool. Egypt J Radiol Nucl Med 2012; 43 (02) 219-226
  • 5 Golfieri R, Baddeley H, Pringle JS, Leung AW, Greco A, Souhami R. MRI in primary bone tumors: therapeutic implications. Eur J Radiol 1991; 12 (03) 201-207
  • 6 Crues J, Bydder G. Frontiers in musculoskeletal imaging. J Magn Reson Imaging 2007; 25 (02) 232-233
  • 7 The Royal College of Radiologists. Guidance on gadolinium-based contrast agent administration to adult patients. London Ref No. BFCR (19)4. Accessed August 27, 2021 at: https://www.rcr.ac.uk/publication/guidance-gadolinium-based-contrast-agent-administration-adult-patients
  • 8 Lee DH. Mechanisms of contrast enhancement in magnetic resonance imaging. Can Assoc Radiol J 1991; 42 (01) 6-12
  • 9 Kanda T, Oba H, Toyoda K, Kitajima K, Furui S. Brain gadolinium deposition after administration of gadolinium-based contrast agents. Jpn J Radiol 2016; 34 (01) 3-9
  • 10 Runge V, Stewart R, Clanton J, Lukehart C, Partain C, James A. Work in progress: potential oral and intravenous paramagnetic NMR contrast agents. Magn Reson Imaging 1984; 2 (01) 69
  • 11 May DA, Good RB, Smith DK, Parsons TW. MR imaging of musculoskeletal tumors and tumor mimickers with intravenous gadolinium: experience with 242 patients. Skeletal Radiol 1997; 26 (01) 2-15
  • 12 Lo HH, Kalisher L, Faix JD. Epithelioid sarcoma:radiologic and pathologic manifestations. AJR Am J Roentgenol 1977; 128 (06) 1017-1020
  • 13 Soldatos T, Durand DJ, Subhawong TK, Carrino JA, Chhabra A. Magnetic resonance imaging of musculoskeletal infections: systematic diagnostic assessment and key points. Acad Radiol 2012; 19 (11) 1434-1443
  • 14 Towers JD. The use of intravenous contrast in MRI of extremity infection. Semin Ultrasound CT MR 1997; 18 (04) 269-275
  • 15 Caravan P, Farrar CT, Frullano L, Uppal R. Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. Contrast Media Mol Imaging 2009; 4 (02) 89-100
  • 16 Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev 2013; 113 (03) 1641-1666
  • 17 Runge VM, Ai T, Hao D, Hu X. The developmental history of the gadolinium chelates as intravenous contrast media for magnetic resonance. Invest Radiol 2011; 46 (12) 807-816
  • 18 Ranga A, Agarwal Y, Garg KJ. Gadolinium based contrast agents in current practice: risks of accumulation and toxicity in patients with normal renal function. Indian J Radiol Imaging 2017; 27 (02) 141-147
  • 19 Xia D, Davis RL, Crawford JA, Abraham JL. Gadolinium released from MR contrast agents is deposited in brain tumors: in situ demonstration using scanning electron microscopy with energy dispersive X-ray spectroscopy. Acta Radiol 2010; 51 (10) 1126-1136
  • 20 Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 2014; 270 (03) 834-841
  • 21 Gulani V, Calamante F, Shellock FG, Kanal E, Reeder SB. International Society for Magnetic Resonance in Medicine. Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol 2017; 16 (07) 564-570
  • 22 Costa A, Ronchi A, Pigatto PD, Guzzi G. Brain gadolinium deposition, hyperintense MRI signals, and resonance contrast agents. Magn Reson Imaging 2018; 52: 137-138
  • 23 Guo BJ, Yang ZL, Zhang LJ. Gadolinium deposition in brain: current scientific evidence and future perspectives. Front Mol Neurosci 2018; 11: 335
  • 24 Roccatagliata L, Vuolo L, Bonzano L, Pichiecchio A, Mancardi GL. Multiple sclerosis: hyperintense dentate nucleus on unenhanced T1-weighted MR images is associated with the secondary progressive subtype. Radiology 2009; 251 (02) 503-510
  • 25 Kasahara S, Miki Y, Kanagaki M. et al. Hyperintense dentate nucleus on unenhanced T1-weighted MR images is associated with a history of brain irradiation. Radiology 2011; 258 (01) 222-228
  • 26 Miller JH, Hu HH, Pokorney A, Cornejo P, Towbin R. MRI brain signal intensity changes of a child during the course of 35 gadolinium contrast examinations. Pediatrics 2015; 136 (06) e1637-e1640
  • 27 Roberts DR, Holden KR. Progressive increase of T1 signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in the pediatric brain exposed to multiple doses of gadolinium contrast. Brain Dev 2016; 38 (03) 331-336
  • 28 McDonald RJ, McDonald JS, Kallmes DF. et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 2015; 275 (03) 772-782
  • 29 Kanda T, Fukusato T, Matsuda M. et al. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 2015; 276 (01) 228-232
  • 30 Sanyal S, Marckmann P, Scherer S, Abraham JL. Multiorgan gadolinium (Gd) deposition and fibrosis in a patient with nephrogenic systemic fibrosis—an autopsy-based review. Nephrol Dial Transplant 2011; 26 (11) 3616-3626
  • 31 Radbruch A, Weberling LD, Kieslich PJ. et al. Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 2015; 275 (03) 783-791
  • 32 Cao Y, Huang DQ, Shih G, Prince MR. Signal change in the dentate nucleus on T1-weighted MR images after multiple administrations of gadopentetate dimeglumine versus gadobutrol. AJR Am J Roentgenol 2016; 206 (02) 414-419
  • 33 Radbruch A, Weberling LD, Kieslich PJ. et al. High-signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evaluation of the macrocyclic gadolinium-based contrast agent gadobutrol. Invest Radiol 2015; 50 (12) 805-810
  • 34 Orenstein B. Gadolinium on the brain: curiosity or cause for concern?. Radiol Today 2016; 17 (07) 20
  • 35 Parillo M, Sapienza M, Arpaia F. et al. A structured survey on adverse events occurring within 24 hours after intravenous exposure to gadodiamide or gadoterate meglumine: a controlled prospective comparison study. Invest Radiol 2019; 54 (04) 191-197
  • 36 Burke LM, Ramalho M, AlObaidy M, Chang E, Jay M, Semelka RC. Self-reported gadolinium toxicity: a survey of patients with chronic symptoms. Magn Reson Imaging 2016; 34 (08) 1078-1080
  • 37 PRAC. gadolinium deposition confirmed with linear agents. Reactions Weekly. 2017; 1661 (01) 6
  • 38 Schmidt K, Bau M, Merschel G, Tepe N. Anthropogenic gadolinium in tap water and in tap water-based beverages from fast-food franchises in six major cities in Germany. Sci Total Environ 2019; 687: 1401-1408
  • 39 Thomsen HS. Are the increasing amounts of gadolinium in surface and tap water dangerous?. Acta Radiol 2017; 58 (03) 259-263
  • 40 Cheng SG. Musculoskeletal MRI: contrast and non-contrast applications. Appl Radiol 2002; 31 (06) 81-86
  • 41 Amini B, Murphy Jr WA, Haygood TM. et al. Gadolinium-based contrast agents improve detection of recurrent soft-tissue sarcoma at MRI. Radiol Imaging Cancer 2020; 2 (02) e190046
  • 42 Drapé JL. Advances in magnetic resonance imaging of musculoskeletal tumours. Orthop Traumatol Surg Res 2013; 99 (Suppl. 01) S115-S123
  • 43 Kransdorf MJ, Murphey MD. The use of gadolinium in the MR evaluation of soft tissue tumors. Semin Ultrasound CT MR 1997; 18 (04) 251-268
  • 44 Verstraete KL, Van der Woude HJ, Hogendoorn PC, De-Deene Y, Kunnen M, Bloem JL. Dynamic contrast-enhanced MR imaging of musculoskeletal tumors: basic principles and clinical applications. J Magn Reson Imaging 1996; 6 (02) 311-321
  • 45 Nascimento D, Suchard G, Hatem M, de Abreu A. The role of magnetic resonance imaging in the evaluation of bone tumours and tumour-like lesions. Insights Imaging 2014; 5 (04) 419-440
  • 46 Miwa S, Otsuka T. Practical use of imaging technique for management of bone and soft tissue tumors. J Orthop Sci 2017; 22 (03) 391-400
  • 47 Sundaram M. The use of gadolinium in the MR imaging of bone tumors. Semin Ultrasound CT MR 1997; 18 (04) 307-311
  • 48 Reiser MF, Bongartz GP, Erlemann R. et al. Gadolinium-DTPA in rheumatoid arthritis and related diseases: first results with dynamic magnetic resonance imaging. Skeletal Radiol 1989; 18 (08) 591-597
  • 49 Cimmino MA, Innocenti S, Livrone F, Magnaguagno F, Silvestri E, Garlaschi G. Dynamic gadolinium-enhanced magnetic resonance imaging of the wrist in patients with rheumatoid arthritis can discriminate active from inactive disease. Arthritis Rheum 2003; 48 (05) 1207-1213
  • 50 Aoki T, Yamashita Y, Saito K, Tanaka Y, Korogi Y. Diagnosis of early-stage rheumatoid arthritis: usefulness of unenhanced and gadolinium-enhanced MR images at 3 T. Clin Imaging 2013; 37 (02) 348-353
  • 51 Miese F, Buchbender C, Scherer A. et al. Molecular imaging of cartilage damage of finger joints in early rheumatoid arthritis with delayed gadolinium-enhanced magnetic resonance imaging. Arthritis Rheum 2012; 64 (02) 394-399
  • 52 Stomp W, Krabben A, van der Heijde D. et al. Aiming for a simpler early arthritis MRI protocol: can Gd contrast administration be eliminated?. Eur Radiol 2015; 25 (05) 1520-1527
  • 53 König H, Sieper J, Wolf KJ. Rheumatoid arthritis: evaluation of hypervascular and fibrous pannus with dynamic MR imaging enhanced with Gd-DTPA. Radiology 1990; 176 (02) 473-477
  • 54 Hopkins KL, Li KC, Bergman G. Gadolinium-DTPA-enhanced magnetic resonance imaging of musculoskeletal infectious processes. Skeletal Radiol 1995; 24 (05) 325-330
  • 55 Steinbach LS, Palmer WE, Schweitzer ME. Special focus session. MR arthrography. Radiographics 2002; 22 (05) 1223-1246
  • 56 Zampa V, Bargellini I, Ortori S, Faggioni L, Cioni R, Bartolozzi C. Osteoid osteoma in atypical locations: the added value of dynamic gadolinium-enhanced MR imaging. Eur J Radiol 2009; 71 (03) 527-535
  • 57 Erlemann R, Reiser M, Peters PE, Wuisman P, Niendorf HP, Kunze V. Time-dependent changes in signal intensity in neoplastic and inflammatory lesions of the musculoskeletal system following intravenous administration of Gd-DTPA. Radiologe 1988; 28 (06) 269-276
  • 58 Crespo-Rodríguez AM, De Lucas-Villarrubia JC, Pastrana-Ledesma M, Hualde-Juvera A, Méndez-Alonso S, Padron M. The diagnostic performance of non-contrast 3-Tesla magnetic resonance imaging (3-T MRI) versus 1.5-Tesla magnetic resonance arthrography (1.5-T MRA) in femoro-acetabular impingement. Eur J Radiol 2017; 88: 109-116
  • 59 Chopra A, Grainger AJ, Dube B. et al. Comparative reliability and diagnostic performance of conventional 3T magnetic resonance imaging and 1.5T magnetic resonance arthrography for the evaluation of internal derangement of the hip. Eur Radiol 2018; 28 (03) 963-971
  • 60 Magee T. 3-T MRI of the shoulder: is MR arthrography necessary?. AJR Am J Roentgenol 2009; 192 (01) 86-92
  • 61 Li X, Liu X, Du X, Ye Z. Diffusion-weighted MR imaging for assessing synovitis of wrist and hand in patients with rheumatoid arthritis: a feasibility study. Magn Reson Imaging 2014; 32 (04) 350-353
  • 62 Major NM, Browne J, Domzalski T, Cothran RL, Helms CA. Evaluation of the glenoid labrum with 3-T MRI: is intraarticular contrast necessary?. AJR Am J Roentgenol 2011; 196 (05) 1139-1144
  • 63 Symanski JS, Subhas N, Babb J, Nicholson J, Gyftopoulos S. Diagnosis of superior labrum anterior-to-posterior tears by using MR imaging and MR arthrography: a systematic review and meta-analysis. Radiology 2017; 285 (01) 101-113
  • 64 Ajuied A, McGarvey CP, Harb Z, Smith CC, Houghton RP, Corbett SA. Diagnosis of glenoid labral tears using 3-tesla MRI vs. 3-tesla MRA: a systematic review and meta-analysis. Arch Orthop Trauma Surg 2018; 138 (05) 699-709