J Knee Surg 2023; 36(04): 450-455
DOI: 10.1055/s-0041-1736148
Original Article

Variability in the Processing of Fresh Osteochondral Allografts

Kyle D. Paul
1   Department of Orthopaedics, The University of Alabama at Birmingham, Birmingham, Alabama
,
Romil K. Patel
1   Department of Orthopaedics, The University of Alabama at Birmingham, Birmingham, Alabama
,
Alexandra M. Arguello
1   Department of Orthopaedics, The University of Alabama at Birmingham, Birmingham, Alabama
,
Adam Kwapisz
2   Clinic of Orthopedics and Pediatric Orthopedics, Medical University of Lodz, Lodz, Lodzkie, Poland
,
Eugene W. Brabston
1   Department of Orthopaedics, The University of Alabama at Birmingham, Birmingham, Alabama
,
3   Department of Orthopaedic Surgery, University of Missouri Columbia, Missouri Orthopaedic Institute, Columbia, Missouri
4   Department of Thompson Laboratory for Regenerative Orthopaedics, University of Missouri Columbia, Missouri Orthopaedic Institute, Columbia, Missouri
,
Brent A. Ponce
5   Department of Orthopaedics, Hughston Clinic, Columbus, Georgia
,
Amit M. Momaya
1   Department of Orthopaedics, The University of Alabama at Birmingham, Birmingham, Alabama
› Institutsangaben

Abstract

The indications for fresh osteochondral allograft continue to increase. As a result, variations in graft processing and preservation methods have emerged. An understanding of these techniques is important when evaluating the optimal protocol for processing fresh osteochondral allografts prior to surgical implantation. The aim of this study is to review the literature and understand various tissue processing protocols of four leading tissue banks in the United States. Donor procurement, serological and microbiological testing, and storage procedures were compared among companies of interest. Similarities between the major tissue banks include donor screening, aseptic processing, and testing for microorganisms. Variability exists between these companies with relation to choice of storage media, antibiotic usage, storage temperature, and graft expiration dates. Potential exists for increased chondrocyte viability and lengthened time-to-expiration of the graft through a protocol of delicate tissue handling, proper choice of storage medium, adding hormones and growth factors like insulin growth factor-1 (IGF-1) to serum-free nutrient media, and storing these grafts closer to physiologic temperatures.



Publikationsverlauf

Eingereicht: 31. März 2021

Angenommen: 12. August 2021

Artikel online veröffentlicht:
02. Oktober 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Giedraitis A, Arnoczky SP, Bedi A. Allografts in soft tissue reconstructive procedures: important considerations. Sports Health 2014; 6 (03) 256-264
  • 2 Cavendish PA, Everhart JS, Peters NJ, Sommerfeldt MF, Flanigan DC. Osteochondral allograft transplantation for knee cartilage and osteochondral defects: a review of indications, technique, rehabilitation, and outcomes. JBJS Rev 2019; 7 (06) e7
  • 3 Stoker AM, Stannard JP, Kuroki K, Bozynski CC, Pfeiffer FM, Cook JL. Validation of the Missouri osteochondral allograft preservation system for the maintenance of osteochondral allograft quality during prolonged storage. Am J Sports Med 2018; 46 (01) 58-65
  • 4 Beer AJ, Tauro TM, Redondo ML, Christian DR, Cole BJ, Frank RM. Use of allografts in orthopaedic surgery: safety, procurement, storage, and outcomes. Orthop J Sports Med 2019; 7 (12) 2325967119891435
  • 5 Lee S, Frank RM, Christian DR, Cole BJ. Analysis of defect size and ratio to condylar size with respect to outcomes after isolated osteochondral allograft transplantation. Am J Sports Med 2019; 47 (07) 1601-1612
  • 6 Tírico LEP, McCauley JC, Pulido PA, Bugbee WD. Lesion size does not predict outcomes in fresh osteochondral allograft transplantation. Am J Sports Med 2018; 46 (04) 900-907
  • 7 Rucinski K, Stannard JP, Crecelius C, Cook JL. Changes in knee range of motion after large osteochondral allograft transplantations. Knee 2021; 28: 207-213
  • 8 Pallante AL, Bae WC, Chen AC, Görtz S, Bugbee WD, Sah RL. Chondrocyte viability is higher after prolonged storage at 37 degrees C than at 4 degrees C for osteochondral grafts. Am J Sports Med 2009; 37 (Suppl. 01) 24S-32S
  • 9 Czitrom AA, Keating S, Gross AE. The viability of articular cartilage in fresh osteochondral allografts after clinical transplantation. J Bone Joint Surg Am 1990; 72 (04) 574-581
  • 10 Enneking WF, Campanacci DA. Retrieved human allografts: a clinicopathological study. J Bone Joint Surg Am 2001; 83 (07) 971-986
  • 11 Enneking WF, Mindell ER. Observations on massive retrieved human allografts. J Bone Joint Surg Am 1991; 73 (08) 1123-1142
  • 12 Campbell J, Filardo G, Bruce B. et al. Salvage of contaminated osteochondral allografts: the effects of chlorhexidine on human articular chondrocyte viability. Am J Sports Med 2014; 42 (04) 973-978
  • 13 Stoker AM, Stannard JP, Cook JL. Chondrocyte viability at time of transplantation for osteochondral allografts preserved by the Missouri osteochondral preservation system versus standard tissue bank protocol. J Knee Surg 2018; 31 (08) 772-780
  • 14 Cook JL, Stannard JP, Stoker AM. et al. Importance of donor chondrocyte viability for osteochondral allografts. Am J Sports Med 2016; 44 (05) 1260-1268
  • 15 Garrity JT, Stoker AM, Sims HJ, Cook JL. Improved osteochondral allograft preservation using serum-free media at body temperature. Am J Sports Med 2012; 40 (11) 2542-2548
  • 16 Vangsness Jr. CT, Garcia IA, Mills CR, Kainer MA, Roberts MR, Moore TM. Allograft transplantation in the knee: tissue regulation, procurement, processing, and sterilization. Am J Sports Med 2003; 31 (03) 474-481
  • 17 Nover AB, Stefani RM, Lee SL. et al. Long-term storage and preservation of tissue engineered articular cartilage. J Orthop Res 2016; 34 (01) 141-148
  • 18 Cook JL, Stoker AM, Stannard JP. et al. A novel system improves preservation of osteochondral allografts. Clin Orthop Relat Res 2014; 472 (11) 3404-3414
  • 19 LifeNetHealth. Fresh osteochondral allograft frequently asked questions. Accessed August 31, 2021 at: https://www.lifenethealth.org/sites/default/files/files/68-30-098.pdf
  • 20 Ortho JRF. Frequently Asked Questions. In; 2018
  • 21 Musculoskeletal Transplant Foundation. Osteochondral Allograft Tissue. 2016
  • 22 RTI Surgical. Allograft Tissue Package Insert. 2012
  • 23 Goodfriend B, Essilfie AA, Jones IA, Thomas Vangsness Jr C. Fresh osteochondral grafting in the United States: the current status of tissue banking processing. Cell Tissue Bank 2019; 20 (03) 331-337
  • 24 Bugbee WD, Pallante-Kichura AL, Görtz S, Amiel D, Sah R. Osteochondral allograft transplantation in cartilage repair: graft storage paradigm, translational models, and clinical applications. J Orthop Res 2016; 34 (01) 31-38
  • 25 Tírico LE, Demange MK, Santos LA. et al. Development of a fresh osteochondral allograft program outside North America. Cartilage 2016; 7 (03) 222-228
  • 26 U.S. Department of Health and Human Services. Screening and testing of donors of human tissue intended for transplantation: guidance for industry. Accessed August 31, 2021 at: https://www.fda.gov/files/vaccines%2C%20blood%20%26%20biologics/published/Guidance-for-Industry–Screening-and-Testing-of-Donors-of-Human-Tissue-Intended-for-Transplantation.pdf
  • 27 Vangsness Jr. CT, Wagner PP, Moore TM, Roberts MR. Overview of safety issues concerning the preparation and processing of soft-tissue allografts. Arthroscopy 2006; 22 (12) 1351-1358
  • 28 Centers for Disease Control and Prevention (CDC). Update: allograft-associated bacterial infections–United States, 2002. MMWR Morb Mortal Wkly Rep 2002; 51 (10) 207-210
  • 29 Teng MS, Yuen AS, Kim HT. Enhancing osteochondral allograft viability: effects of storage media composition. Clin Orthop Relat Res 2008; 466 (08) 1804-1809
  • 30 Ball ST, Amiel D, Williams SK. et al. The effects of storage on fresh human osteochondral allografts. Clin Orthop Relat Res 2004; (418) 246-252
  • 31 Mickevicius T, Pockevicius A, Kucinskas A. et al. Impact of storage conditions on electromechanical, histological and histochemical properties of osteochondral allografts. BMC Musculoskelet Disord 2015; 16: 314
  • 32 Rohanova D, Boccaccini AR, Horkavcova D, Bozděchová P, Bezdička P, Častorálová P. Is non-buffered DMEM solution a suitable medium for in vitro bioactivity tests. J Mat Chem B 2014; 2: 5068-5076
  • 33 Pennock AT, Wagner F, Robertson CM, Harwood FL, Bugbee WD, Amiel D. Prolonged storage of osteochondral allografts: does the addition of fetal bovine serum improve chondrocyte viability?. J Knee Surg 2006; 19 (04) 265-272
  • 34 Gstraunthaler G, Lindl T, van der Valk J. A plea to reduce or replace fetal bovine serum in cell culture media. Cytotechnology 2013; 65 (05) 791-793
  • 35 Class 2 Device Recall GE Healthcare/PAA Healthcare. Accessed August 31, 2021 at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=117863
  • 36 Jochems CE, van der Valk JB, Stafleu FR, Baumans V. The use of fetal bovine serum: ethical or scientific problem?. Altern Lab Anim 2002; 30 (02) 219-227
  • 37 Lattermann C, Romine SE. Osteochondral allografts: state of the art. Clin Sports Med 2009; 28 (02) 285-301 , ix
  • 38 Cook JL, Hung CT, Lima E. et al. Tissue preservation system. In: Office USPaT. ed. United States: The Curators of the University of Missouri; The Trustees of Columbia University in the City of New York; 2015
  • 39 Röhner E, Zippelius T, Böhle S, Rohe S, Matziolis G, Jacob B. Vancomycin is toxic to human chondrocytes in vitro. Arch Orthop Trauma Surg 2021; 141 (03) 375-381
  • 40 Shaw KA, Eichinger JK, Nadig N, Parada SA. In vitro effect of vancomycin on the viability of articular chondrocytes. J Orthop Trauma 2018; 32 (03) 148-153
  • 41 Antoci Jr. V, Adams CS, Hickok NJ, Shapiro IM, Parvizi J. Antibiotics for local delivery systems cause skeletal cell toxicity in vitro. Clin Orthop Relat Res 2007; 462 (462) 200-206
  • 42 Dogan M, Isyar M, Yilmaz I. et al. Are the leading drugs against Staphylococcus aureus really toxic to cartilage?. J Infect Public Health 2016; 9 (03) 251-258
  • 43 Pezzanite L, Chow L, Piquini G. et al. Use of in vitro assays to identify antibiotics that are cytotoxic to normal equine chondrocytes and synovial cells. Equine Vet J 2021; 53 (03) 579-589
  • 44 Newman RJ, Chow L, Goodrich LR, Lambrechts NE, Dow SW, Pezzanite LM. Susceptibility of canine chondrocytes and synoviocytes to antibiotic cytotoxicity in vitro. Vet Surg 2021; 50 (03) 650-658
  • 45 Rorick CB, Mitchell JA, Bledsoe RH, Floren ML, Wilkins RM. Cryopreserved, thin, laser-etched osteochondral allograft maintains the functional components of articular cartilage after 2 years of storage. J Orthop Surg Res 2020; 15 (01) 521
  • 46 Poleni PE, Bianchi A, Etienne S. et al. Agonists of peroxisome proliferators-activated receptors (PPAR) alpha, beta/delta or gamma reduce transforming growth factor (TGF)-beta-induced proteoglycans' production in chondrocytes. Osteoarthritis Cartilage 2007; 15 (05) 493-505
  • 47 Validation of procedures for processing of human tissues intended for transplantation: guidance for industry. Accessed August 31, 2021 at: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/validation-procedures-processing-human-tissues-intended-transplantation
  • 48 Serum-free, haematopoietic media, X–VIVO. Accessed August 31, 2021 at: https://uk.vwr.com/store/product/16615090/serum-free-haematopoietic-media-x-vivotm
  • 49 Dorcemus DL, George EO, Dealy CN, Nukavarapu SP. Harnessing external cues: development and evaluation of an in vitro culture system for osteochondral tissue engineering. Tissue Eng Part A 2017; 23 (15,16): 719-737
  • 50 Denbeigh JM, Hevesi M, Paggi CA. et al. Modernizing storage conditions for fresh osteochondral allografts by optimizing viability at physiologic temperatures and conditions. Cartilage 2019; 1947603519888798: 1947603519888798
  • 51 Stoker AM, Caldwell KM, Stannard JP, Cook JL. Metabolic responses of osteochondral allografts to re-warming. J Orthop Res 2019; 37 (07) 1530-1536
  • 52 Stannard JP, Cook JL. Prospective assessment of outcomes after primary unipolar, multisurface, and bipolar osteochondral allograft transplantations in the knee: a comparison of 2 preservation methods. Am J Sports Med 2020; 48 (06) 1356-1364
  • 53 Expert Committee on Microbiology and Sterility Assurance. <71> Sterility Test. Available at: https://www.usp.org/harmonization-standards/pdg/general-methods/sterility-test